FIE1 Series Mini Type Frequency Inverter User Manual

Foreword

Thank you for using the FIE1 series of high-performance vector inverter.

New FIE1 series is a general current vector control inverter integrated with the performance and features in a high degree.

FIE1 with industry-leading drive performance and functionality control, using unique current vector control algorithm can efficiently drive induction motor and synchronous motor to achieve high accuracy, high torque and high-performance control.

Customer success, market service! FIE1 in terms of performance and control are worthy of trust!

This guide explains how to properly use FIE1 series inverter. Before using (installation, operation, maintenance, inspection, etc.), be sure to carefully read the instructions. Understanding of product safety precautions before using this product.

General notes

- This manual due to product improvement, specifications change, as well as to the instructions of their ease of use will be appropriate changes. We will update the information number of instructions, issued a revised edition.
- Due to damage to or loss need to order the manual, please contact VTDRIVE TECHNOLOGY LIMITED or VTDRIVE TECHNOLOGY LIMITED agents to order it as per the information number on the cover.
- This icon in the instructions with the products you ordered may be different, please refer to the specific documentation for products supplied.

Definition of security

In this manual, safety issues the following two categories:

Warning: Due to the dangers posed against the required operation, may result in serious injury and even death.

(I) Causion: Due to the dangers posed against the required operation, may lead to moderate harm or minor injuries, and damage to the equipment.

Installation, commissioning and maintenance of the system, please carefully read this chapter (safety precautions), follow the required safety precautions to operate. In case of any injuries and losses caused as a result of illegal operations, that is nothing to do with VTDRIVE TECHNOLOGY LIMITED.

Safety precautions

Before Installation

🚺 Warning

Do not install inverter finding the control system with water in,or inverter with missing parts or damaged parts. Please do not install inverter when the packing list is not consistent with the physical name.

1 Warning

Carefully handled when loading, otherwise it may damage the inverter.

Please don't use the damaged driver or missing parts inverter, there may be risk of injury.

Do not touch components of the control system, otherwise it will cause danger of static electricity.

During Installation

Warning

Mount the inverter on incombustible surface like metal, and keep away from flammable substances. Otherwise it may cause fire.

Do not twist the mounting bolt of the equipment, especially the screw bolt marked in RED.

Prohibit the use in the dangerous environment where inflammable or combustible or explosive gas, liquid or solid exists. Or it may cause electric shock or fire.

Caution

Do not drop the conducting wire stub or screw into the inverter. Otherwise ,it may cause damage to the inverter.

Please install the inverter at the place of less direct sunlight and vibration.

Please mind the location of its installation when more than two inverters are installed in one cabinet, so the radiation effect is promised.

During Wiring

Varning

Operation shall be performed by the professional engineering technician. Otherwise there will be unexpected danger.

There shall be circuit breaker between the inverter and power supply. Otherwise, there may be fire.

Make sure the power is disconnected prior to the connection. Otherwise there will be danger of electric shock.

The earth terminal shall be earthed reliably. Otherwise there may be danger of electric shock.

Warning

Please don't put the power line and the signal line from the same pipeline, when operating wiring, please make power line and signal line apart above 30cm.

The encoder must use shielded cable, and the shield must ensure that a single side of a reliable ground! Do not connect the input power cable to the output terminals(U/T1, V/T2, W/T3).Attention to the terminals of the mark and do not make wrong connection. Otherwise it may damage the inverter.

The brake resistor cannot be directly connected between the DC bus terminals (DC+), (DC-). Otherwise it may cause fire.

Ensure the wiring meet the EMC requirements and the local safety standard.

The wire size shall be determined according to the manual. Otherwise, accident may be caused!

Before Power-on

Caution

Any part of the inverter need not to carry on pressure test, which has been done before leaving factory.Or accident may be caused.

Please confirm whether the power voltage class is consistent with the rated voltage of the inverter and the Input terminal (R/L1, S/L2, T/L3) and Output terminal(U/T1, V/T2, W/T3)cable connecting positions are correct, and check whether the external circuit is short circuited and whether the connecting line is firm, otherwise it may damage the inverter.

Do not frequently turn ON/OFF power .If continuously ON/OFF power is needed, please make sure the time interval more than 1 minute.

Caution

The cover must be well closed prior to the inverter power-on. Otherwise electric shock may be caused! All the external fittings must be connected correctly in accordance with the circuit provided in this manual.Or accident may occur.

Upon Power-on

Do not open the cover of the inverter upon power-on.Otherwise there will be danger of electric shock!

Do not touch the inverter and its surrounding circuit with wet hand. Otherwise there will be danger of electric shock.

Do not touch the inverter terminals (including control terminal). Otherwise there will be danger of electric shock.

At power-on, the inverter will perform the security check of the external stong-current circuit automatically. Thus, at this time please do not touch the terminals U/T1, V/T2, W/T3, or the terminals of motor, otherwise there will be danger of electric shock.

If the parameter identification is required, pay attention to the danger of injury arising from the rotating motor. Otherwise accident may occur.

Do not change the factory settings at will. Otherwise it may damage the equipment.

During the Operation

Warning

Do not touch the fan, heat sink or discharge resistor to sense the temperature. Otherwise, you may get burnt.

Detection of signals during the operation shall only be conducted by qualified technician. Otherwise, personal injury or equipment damage may be caused.

1 Caution

Do not control run/stop by using contactor.Or equipment damage may be caused! Avoid anything falling into the equipment when inverter is running. Or damage may be caused.

Maintenance

1 Warning

Do not carry out repairs and maintenance of equipment with power on. Otherwise, there is a risk of electric shock!

No specially trained personnel can not make inverter implementation of repairs and maintenance. Otherwise, personal injury or equipment damage may be caused!

Make sure the inverter when the inverter voltage is lower than AC36V implementation of the maintenance and repair, five minutes after power prevail. Otherwise, the residual charge on the capacitor will cause damage!

Make the inverter parameter settings, only with all pluggable plug in and out in the case of power outages!

Precautions

Motor insulation inspection

Motor in use for the first time, placed a long time before re-use and periodic inspection should be done, the motor insulation should be checked, to prevent the motor winding insulation failure and damage to the inverter. To motor insulation check connection separate from the inverter, 500V megger is recommended, should ensure that the measured insulation resistance of not less than $5M\Omega$.

Motor thermal protection

If the rated capacity of the motor does not match those of the inverter, especially when the rated power of the inverter is higher than the rated power of the motor, be sure to adjust the inverter motor protection parameter values , or thermal relay shall be mounted for motor protection.

•Running with frequency higher than power frequency

This inverter can provide output frequency from 0Hz to 3000Hz. If the customer is required to run 50Hz above, consider the mechanical endurance of the device.

•Vibration of mechanical device

The inverter may encounter the mechanical resonance point at certain output frequencies, which can be avoided by setting the skip frequency parameters in the inverter.

Motor heat and noise

Since the output voltage of inverter is PWM wave and contains certain harmonics, the temperature rise, noise and vibration of the motor comparing with the power frequency will be increased slightly.

Use with the voltage different with the rated voltage

If the FIE1 series inverter is used outside the allowable working voltage range as specified in this manual, it is easily lead to the inverter devices damage. If needed, use the corresponding boost or lower voltage transformer processing.

•The output side with the pressure-sensitive devices or to improve the power factor capacitor

Since the inverter output is PWM wave, the output side if installed with capacitors to improve the power factor or lightning varistors. Easily lead to the inverter instantaneous overcurrent or even damage the drive, do not use.

•Switching devices like contactors used at the input and output terminal

If a contactor is installed between the power supply and the input terminal of the inverter, it is not allowed to use the contactor to control the startup/stop of the inverter. Necessarily need to use the contactor control inverter start and stop of not less than an hour. Frequent charge and discharge will reduce the service life of the capacitor inside the inverter. If switching devices like contactor are installed between the output terminal and the motor, should ensure that the inverter output off operation, otherwise easily lead to the inverter module damage.

•Change three-phase input to two-phase input

It is not allowed to change the FIE1 series three-phase inverter into two-phase. Otherwise, it may cause fault or damage to the inverter. This operation must be handed under VTDRIVE TECHNOLOGY LIMITED technical guidance.

Lightning surge protection

The series inverter has lightning over current protection device, and has certain selfprotection ability against the lightning. In applications where lightning occurs frequently, the user shall install additional protection devices in front of the inverter.

•Altitude and derating use

Altitude of over 1000m of the region, the heat sink's cooling effect of the inverter may turn poorer due to the thin air. Therefore, it needs to derate the inverter for use. This case please contact our technical advice.

Some special uses

If the user needs to use the inverter with the methods other than the recommended wiring diagram in this manual, such as DC bus, please consult our company.

•Cautions of inverter scrapped

The electrolytic capacitors on the main circuit and the PCB may explode when they are burnt. Emission of toxic gas may be generated when the plastic parts are burnt. Processed as industrial waste.

Adaptable motor

 The standard adaptable motor is four-pole squirrel-cage asynchronous induction motor or permanent magnetic synchronous motor. If such motor is not available, be sure to select adaptable motors in according to the rated current of the motor.

2) The cooling fan and the rotor shaft of the non-frequency-conversion motor adopt coaxial connection. When the rotating speed is reduced, the heat sink cooling effect will be reuduced. Therefore, overheating occasions should be retrofitted with a strong exhaust fan or replace the variable frequency motor.

3) Since the inverter has built-in standard parameters of the adaptable motors, it is necessary to perform motor parameter identification or modify the default values so as to comply with the actual values as much as possible, or it may affect the performance and protective properties.

4)Since short circuit cable or internal circuit of motor may cause alarm,or even machine explosion, please do insulation and short circuit test before the initial use as well as daily maintenance. Note: be sure to do this test, inverter and tested parts must be all separated!

EMC Guidance

According to the national standard of GB/T12668.3, FIE1 comply with the requirements for electromagnetic interference and anti-electromagnetic interference.

FIE1 series inverter meet international standard as below ,the products have passed CE certification.

IEC/EN 61800-5-1:2003 Safety Regulations on Commissionable Electric Drive System IEC/EN 61800-3:2004 Commissionable Electric Drive System

To obtain good electromagnetic compatibility in general industrial environment, please refer to the following instruction:

Installation of EMC guidance:

- 1) Ground wire of inverter and other electrical products should be well grounded.
- Try not set parallel arrangement for inverter input/output power line and weak electric signal lines, set vertical arrangement if possible.
- 3) The inverter output power line is recommended to use shielded cable, or steel shielded power line, and shielding layer should be reliable grounded. Twisted pair shielded control cable is recommended for wiring of interference device.
- If the distance between the inverter and the motor exceeds 100 meters, output filter or reactor shall be installed.

Input filter installation EMC guidance:

- Note: The filters should strictly be used according to the rated value. As filter belongs to class I appliances, filter metal shell ground shold be large area well connected to installation cabinet metal gound, and good conductive continuity is required. Otherwise there will be risk of electric shock and serious impact on the EMC effect.
- EMC test proves, filter and PE end must be connected to the same public ground, otherwise it will seriously affect the EMC effect.
- 3) Filter should be installed as close as possible to the inverter power supply input.

Contents

Section I.	Pre	oduct Information	9			
	1-1	Product series	9			
	1-2	Product shape	10			
	1-3	Standard specification	12			
	1-4	Interface configuration	15			
Section II.	. In	stallation & Wiring	17			
	2-1	Use of the environment	17			
	2-2 Handling and installation					
	2-3	Control circuit terminals description	19			
	2-4	Terminal Wiring	21			
	2-5	Digital input and out terminal	22			
	2-6	Standby circuit	23			
Section III	l. F	ittings	24			
	3-1	Peripheral Electric Parts of FIE1	25			
	3-2	Mounting hole dimensions				
Section IV	И. К	eyboard Operation	320			
	4-1	Keyboard size				
	4-2	Display interface				
	. –	Examples for parameter setting				
	4-4	Test running				
Section V	. Pa	arameter Function Table				
	5-1	Monitor function group:U0.00-U0.61				
	5-2	Basic function group:P0.00-P0.28				
		Parameters for motor 1:P1.00-P1.37				
	5-4	Vector control function group:P2.00-P2.22.				
		V/F control group:P3.00-P3.15				
	5-6	Input terminal:P4.00-P4.39				
	5-7	Output terminal:P5.00-P5.22				
	5-8	Start/stop control:P6.00-P6.15				
	5-9	Keyboard and display:P7.00-P7.14				
	5-10					
	5-11	-				
	5-12	PID function group:PA.00-PA.28	98			
	5-13	Swing frequency, fixed length and counting:Pb.00-Pb.09	103			
	5-14					
	5-15	Communication function group:Pd.00-Pd.29	108			
	5-16	User customization function code:PE.00-PE.29	110			
	5-17	Function code management:PP.00-PP.04	111			
	5-18	Torque control group:A0.00-A0.08	113			

:	5-19	Virtual IO:A1.00-A1.21	114
:	5-20	The second motor control:A2.00-A2.65.	118
5-21		The third motor control:A3.00-A3.65	121
:	5-22	The fourth motor control:A4.00-A4.65	124
4	5-23	Control optimization group:A5.00-A5.09	127
4	5-24	Al curve setup :A6.00-A6.29	
4	5-25	User programmable card parameters:A7.00-A7.09	130
4	5-26	Extended function group:A9.00-A9.09.	131
:	5-27	AIAO correction:AC.00-AC.19	132
Section VI.	. Fa	ault Diagnosis & Solutions	134
(6-1	Fault alarm and solutions	134
(6-2	Common fault and solutions	141
Section VI	I. II	nspection & Maintenance	143
	7-1	Inspection and maintenance	143
	7-2	Regular replacement of the device	144
	7-3	Storage	144
	7-4	Measuring and judgment	144
	7-5	Safety precaution	144
Appendix	I V	Tdrive S485 Card and RS485 Communication Protocol	145
	l-1 '	VTdrive S485 card	146
I	I-2 I	Mechanical installation and control terminal function description	146
I	1-3 (Communication protocol	147
I	-4 (Cyclical redundancy check	
I	I-5 (Communication parameter address	150
Appendix	II P	arameter Settings List	155

Section I. Product Information

VTdrive frequency inverters have been tested and inspected before leaving the manufacturer. Before unpacking the product, please check product packaging for shipping damage caused by careless transportation and whether the specifications and type of the product complies with the order. If any questions, please contact the supplier of VTdrive products, or directly contact the company.

- Inspect that the contents are complete (one unit of FIE1 frequency inverter, one operation manual).
- Check the nameplate on the side of the frequency inverter to ensure that the product you have received is right the one you ordered.
- Compare to General type, 1.the Economic type is smaller, and suitable for light load applications 2.No built-in brake unit.

1-1 Product series

laurenten aneriet	Motor adapter		Deted input A		Chana DIM	
Inverter model	kW	HP	Rated input A	Rated output A	Shape DIM	
1PH Single phase input	1PH Single phase input:AC 220V, 50/60Hz					
FWI-FIE1-d04	0.4	0.5	5.9	2.5	001M	
FWI-FIE1-d75	0.75	1	8.3	4	001M	
FWI-FIE1-1d5	1.5	2	14.1	7	001M	

Table 1-3

1-2 Product shape

1-2-1 Shape figure

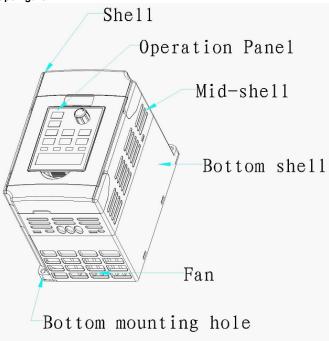


Fig.1-2.1

1-2-2 FIE1 size

1) 1PH Single phase input:AC 220V

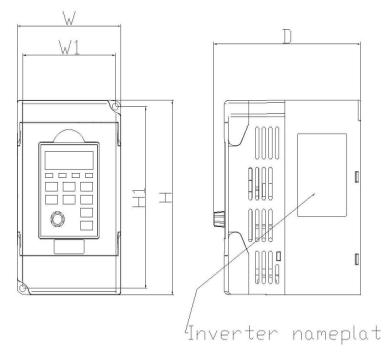


Fig.1-2.2

	Sha	ape dimer	nsion	Installation dimension		Wei	ight	
Shape DIM	w	D	н	H1	W1	d	Raw weight G.W(kg)	Net weight N.W(kg)
1ph 220V	142	85.5	132	113	74	Ø2	1.1	0.8

Fig. 1-2.5

1-3 Standard specification

V/F curve 1.6, 1.8, 2) V/F separation In 2 ways:separation ,semi separation Straight line or S curve acceleration and deceleration mode.	djusted		
Maximum frequency Vector control:0~500Hz V/Fcontrol:0~3200Hz Carrier frequency 0.5kHz~16kHz; the carrier frequency will be automatically a according to the load characteristics Input frequency resolution Digital setting: 0.01Hz Analog setting: maximum frequency ×0.025% Control mode Closed loop vector control(SVC) Control mode Closed loop vector control(FVC) V/F control V/F control Startup torque G type:0.5Hz/150%(SVC); 0Hz/180%(FVC) P type:0.5Hz/100 Speed range 1:100(SVC) Speed range 1:100(SVC) Torque control precision ±0.5%(SVC) Ver load capability G type:150% rated current 60 seconds; 180% rated current 3 set P type:120% rated current 60 seconds; 180% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated cur	djusted		
Image: Second			
Carrier frequency according to the load characteristics Input frequency resolution Digital setting: 0.01Hz Analog setting: maximum frequency ×0.025% Open loop vector control(SVC) Open loop vector control(SVC) Control mode Closed loop vector control(FVC) V/F control V/F control Startup torque G type:0.5Hz/150%(SVC); 0Hz/180%(FVC) P type:0.5Hz/100 Speed range 1:100(SVC) Speed range 1:100(SVC) Torque control precision ±0.5%(SVC) Ver load capability G type:150% rated current 60 seconds; 180% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150%			
Input frequency resolution Analog setting: maximum frequency ×0.025% Open loop vector control(SVC) Open loop vector control(FVC) Control mode Closed loop vector control(FVC) V/F control V/F control Startup torque G type:0.5Hz/150%(SVC); 0Hz/180%(FVC) P type:0.5Hz/100 Speed range 1:100(SVC) Speed stabilizing precision ±0.5%(SVC) ±0.02%(FVC) ±0.02%(FVC) Torque control precision ±5%(FVC) Over load capability G type:150% rated current 60 seconds; 180% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 60 seconds; 150% rated current 60 seconds; 150% rated c)%		
Control mode Closed loop vector control(FVC) V/F control Startup torque G type:0.5Hz/150%(SVC); 0Hz/180%(FVC) P type:0.5Hz/100 Speed range 1:100(SVC) Speed range 1:100(SVC) Speed stabilizing precision ±0.5%(SVC) Torque control precision ±5%(FVC) Over load capability G type:150% rated current 60 seconds; 180% rated current 3 seconds; 150% rated current 3 seconds; 160% rated current 3 seconds; 160)%		
Speed range 1:100(SVC) 1:1000(FVC) Speed stabilizing precision ±0.5%(SVC) ±0.02%(FVC) Torque control precision ±5%(FVC) Over load capability G type:150% rated current 60 seconds; 180% rated current 3 set Torque boost Auto torque boost function: Manual torque boost 0.1%~30.0% V/F curve Linear V/F, multi-point V/F and square V/F curve (power of 1 V/F separation In 2 ways:separation ,semi separation Acc. /dec curve Four kinds of acceleration and deceleration time. Acceleration	0%		
Speed stabilizing precision ±0.5%(SVC) ±0.02%(FVC) Torque control precision ±5%(FVC) Over load capability G type:150% rated current 60 seconds; 180% rated current 3 seconds; 150% rated current 3 seconds; 160% rated current 3 seconds; 160% rated current 3 seconds;			
Torque control precision ±5%(FVC) Over load capability G type:150% rated current 60 seconds; 180% rated current 3 set P type:120% rated current 60 seconds; 150% rated current 3 set Torque boost Torque boost Auto torque boost function; Manual torque boost 0.1%~30.0% V/F curve Linear V/F, multi-point V/F and square V/F curve (power of 1 1.6, 1.8, 2) V/F separation In 2 ways:separation ,semi separation Acc. /dec curve Four kinds of acceleration and deceleration time. Acceleration			
Over load capability G type:150% rated current 60 seconds; 180% rated current 3 s P type:120% rated current 60 seconds; 150% rated current 3 set Torque boost Torque boost Auto torque boost function: Manual torque boost 0.1%~30.0% V/F curve Linear V/F, multi-point V/F and square V/F curve (power of 1 1.6, 1.8, 2) V/F separation In 2 ways:separation ,semi separation Acc. /dec curve Straight line or S curve acceleration and deceleration time. Acceleration			
Over load capability P type:120% rated current 60 seconds; 150% rated current 3 set Torque boost Auto torque boost function: Manual torque boost 0.1%~30.0% V/F curve Linear V/F, multi-point V/F and square V/F curve (power of 1 1.6, 1.8, 2) V/F separation In 2 ways:separation ,semi separation Acc. /dec curve Straight line or S curve acceleration and deceleration mode.			
Acc. /dec curve Straight line or S curve acceleration and deceleration mode. Four kinds of acceleration and deceleration time. Acceleration			
Acc. /dec curve Straight line or S curve acceleration and deceleration mode. Four kinds of acceleration and deceleration time. Acceleration			
Acc. /dec curve Straight line or S curve acceleration and deceleration mode. Four kinds of acceleration and deceleration time. Acceleration	Linear V/F, multi-point V/F and square V/F curve (power of 1.2, 1.4, 1.6, 1.8, 2)		
Acc. /dec curve Straight line or S curve acceleration and deceleration mode. Four kinds of acceleration and deceleration time. Acceleration	In 2 ways:separation ,semi separation		
	Four kinds of acceleration and deceleration time. Acceleration and		
DC brake DC brake frequency: 0.00Hz to maximum frequency. Brake 0.0s to 36.0s, and brake current value: 0.0% to 100.0%.	e time:		
Jog control Jog frequency range: 0.00Hz~50.00Hz. Jog acceleration/deceletime 0.0s~6500.0s.	eration		
Simple PLC and MS speed It can realize at maximum of 16 segments speed running via the	e built-		
running in PLC or control terminal.			
Built-in PID It is easy to realize process-controlled closed loop control syste			
Auto voltage regulation It can keep constant output voltage automatically in the or change of network voltage.			
Over-voltage/current stall It can limit the running voltage/current automatically and frequent over-voltage/current tripping during the running process			
Quick current limit Minimize the over-current fault, protect normal operation of the i	Minimize the over-current fault, protect normal operation of the inverter		
Torque limit & control "Excavators" characteristics, automatically limit torque during o prevent frequent over-current tripping. Closed loop vector mode can realize the torque control.	peration,		
When instantaneous power off voltage reduction is comm			
in a short period of time.			
Instantaneous stop non-stop Instantaneous portor on, voltage reduction is comp in a short period of time. Rapid current limit To avoid inverter frequent over-current fault.			
Virtual IO 5 groups of virtual DI, DO to realize simple logic control			

Section I. Product Information

		Section I. Product Information
	Timing control	Timing control function:set time range 0Min~6500.0Min
	Multiple motor switch	4 groups of motor parameters, which can realize 4-motor switch control
	Multi-threaded bus support	Support 4 kinds of field bus:RS485, Profibus-DP, CANlink, CANopen
	Motor overheat protection	Select optional VTdrive C1 analog input DI3x can accept the motor temperature sensor input(PT100, PT1000)
	Multi-encoder support	Support difference, open collector, UVW, rotary transformer, sine cosine encoder etc.
	Programmable PLC	Select optional user programmable card, which can realize secondary development. Programming mode is compatible with VTDRIVE TECHNOLOGY LIMITED PLC.
	Excellent backend software	Support inverter parameter operation and virtual oscilloscope function. Inverter internal state graphic monitor can be realized through virtual oscilloscope.
	Running command channel	Three types of channels: operation panel reference, control terminal reference and serial communication port reference. These channels can be switched in various modes.
	Frequency source	There are totally eleven types of frequency sources, such as digital reference, analog voltage reference , analog current reference, pulse reference , MS speed, PLC, PID and serial port reference.
	Auxiliary frequency source	11 kinds of auxiliary frequency source which can flexible achieve auxiliary frequency tuning, frequency synthesis
Running	Input terminal	Standard: 6 digital input terminals, DI5 can be used as 100kHz high-speed input pulse. 3 analog input terminals which can be used as 0-10V voltage input or 0~20mA current input. Extended function: 4 digital input terminals;
	Output terminal	Standard: 2 digital output terminals, FM is high-speed pulse output terminal (can be choosen as open circuit collector type), support 0~10kHz square wave signal; 1 relay output terminal; 2 analog output terminals, support 0~20mA output current or 0~10V output voltage; Extended function: 1 digital output terminal; 1 relay output terminal; 1 relay output terminal; 1 analog output terminal, support 0~20mA output current or 0~10V output voltage.
_	LED display	Realize parameter setting, status monitoring function
atior	OLED display	Optional device, which can offer Chinese / English operating content
pera	Keyboard potentiometer	Equipped with keyboard potentiometer or coding potentiometer
o p.	Parameter copy	Realize parameter rapid copy through OLED operation panel
Keyboard operation	Key lock&function selection	Realize button locking, define operation range for part of buttons to prevent operation fault.
Ŷ	Protection function	It can implement power-on motor short-circuit detection, input / output
		r

	phase loss protection, over current protection, over voltage protection					
		under voltage protection, overheating protection and overload protection				
	Optional parts	OLED operation panel, brake component, multi-function extended card 1.IO extended card 2.user programmable card, RS485 communication card, Profibus-DP communication card, CANlink communication card, CANopen communication card, differential input PG card, UVW differential input PG card, rotating inverter PG card, OC input PG card.				
	Using place	Indoor, and be free from direct sunlight, dust, corrosive gas, combustible gas, oil smoke, vapor, drip or salt.				
ent	Altitude Below 1000m					
Environment	Ambient temperature	-10 $^\circ\!\!\!C$ to +50 $^\circ\!\!\!C$ (Derating use when under ambient temperature of 40 $^\circ\!\!\!C$ to 50 $^\circ\!\!\!C$)				
Ē	Humidity Less than 95%RH, without condensing					
	Vibration Less than 5.9m/s ² (0.6g)					
	Storage temperature	−10°C~+50°C				

Table:1-5.1

1-4 Interface configuration

	Interface	Standard	Optional 1	Optional 2
	Input DI	DI1~DI5	DI6~DI10 Multi-function card :VTdrive C1	DI7~DI8 Communication card: VTdrive S485
	Output DO	1 way collector output:DO1 1 way relay: TA1,TB1,TC1	1 way collector: extended DO2 1 way relay: extended TA2,TB2,TC2 Multi-function card: VTdrive C1	1 way collector output: extended DO2 Communication card: VTdrive S485
	High speed DI	DI6	-	-
	High speed DO	FM	-	-
	Rs485 communication card	-	Rs485 communication: Multi-function card VTdrive C1	Rs485 communication: communication card VTdrive S485
	Rs232 communication card	-	Rs232 communication: multi-function card VTdrive C1	Rs232 communication: communication card VTdrive S232
FIE1 series	PG interface	-	-	VTdrive G1 Differential input PG card, without dividing frequency output; OC input PG card, without dividing frequency output; Optional 5V,12V,24V. Please provide voltage and pulse input information when ordering. VTdrive G3 UVW differential input PG card without dividing frequency output 5V VTdrive G4 Rotary transformer PG card VTdrive G5 OC input PG card, with 1:1 dividing frequency output:5V, 12V, 24V (optional). Please provide voltage and pulse input information when ordering.
	PLC interface	-	User programmable expansion card VTdrive LC1 employs CPU200DN series PLC programming language , compatible with many	-

-	Keyboard	Single LED keyboard:J5P1 6 groups of parameters can be stored Potentiometer	companies' PLC programming language Double LED keyboard:J5P2E 6 groups of parameter can be stored Coding potentiometer	OLED keyboard:J5P2C 8 groups of parameters can be stored Coding potentiometer
	Constant pressure water supply board	-	4-pump constant pressure water supply 4-pump soft start control panel DN5WS	-

Table:1-4.1 If you need accessories in the table, please declare in order.

Section II. Installation & Wiring

2-1 Use of the environment

- 1) Ambient temperature-10°C~50°C.
- 2) Avoid electromagnetic interference and keep the unit away from the source of interference.
- 3) Prevent dropping water, steam, dust powder, cotton fiber or fine metal powder from invasion.
- 4) Prevent oil, salt and corrosive gas from entering it.
- 5) Avoid vibration. Vibration should be less than 0.6G. Keep away from punching machine etc.
- Avoid high temperature, moisture or being wetted due to raining, with the humidity below 95%RH (non-condensing).
- Prohibit the use in the dangerous environment where inflammable or combustible or explosive gas, liquid or solid exists.

2-2 Handling and installation

- When transporting inverter, right lifting tools are required to prevent inverter from damaging.
- * The number of stacked box of the inverter are not permitted higher than the limit.
- * Please don't run the inverter if there is damage or lacking of components.
- ※ Do not place heavy objects on the frequency inverter.
- Please prevent screw, cable pieces or other conductive objects or oil etc inflammable objects invading the frequency inverter.
- ※ Do not make it fall or have a strong impact.
- Confirm if the installation location and object could withstand the weight of the inverter. The frequency inverter must be installed by wall hooking, indoor room with adequate ventilation, with enough space left between it and the adjacent objects or retaining board (walls) around, as shown in the picture below:

П

0

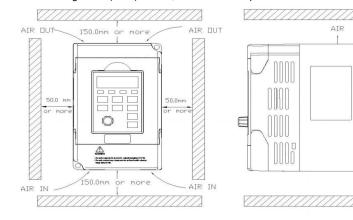
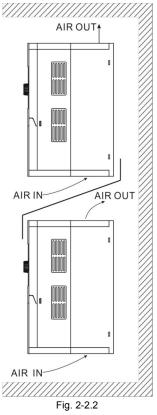



Fig. 2-2.1

Heat dissipation problems should be concerned when doing mechanical installation, please mind rules belows:

1) Mounting space is shown in 2-2.1, which could ensure the heat sinking space of the inverter. However, the heat sinking of other devices in the cabinet shall also be considered.

2) Install the inverter vertically so that the heat may be expelled from the top. However, the equipment cannot be installed upside down. If there are multiple inverters in the cabinet, parallel installation is better. In the applications where up-down installation is required, please install the thermal insulating guide plate referring to the Fig. 2-2.2 for standalone installation and up-down installation.

3) Installing support must be flame retardant materials.

4) It is suggested that cooling cabinet be put outside at places where powder dust exists. Space inside the sealed cabinet shall be large as much as possible.

Fig. 2-3.1

2-3-1 Control circuit terminals description

Terminals function description:

Туре	Terminal sign	Terminal Name	Function Description	
	+10V-GND	External terminal of 10V power supply	Provide +10V power supply for external units, with maximum output current of 10mA. It is generally used as the operating power supply for the external potentiometer. The potentiometer resistance range is 1kΩ to 5kΩ.	
Power supply	+24V- COM	External terminal of 24V power supply	Provide +24V power supply for external units. It is generally used as the operating power supply for digital input/output terminal and the external sensor. Maximum output current: 200mA.	
	SP	External power input terminals	When using external signal to drive DI1~DI6 ,SP should be connected to external power supply, connection with +24V as factory default.	
	Al1-GND	Analog input terminal 1	 Input voltage range: DC 0V to 10V /4mA to 20mA, chosen by jumper J3 on control board. Input impedance: 22kΩ of voltage input, 500Ω of current input. 	
	Al2-GND	Analog input terminal 2	 Input range:DC 0V~10V/4mA~20mA,chosen by jumper JP4 on control board. Input impedance: 22kΩ of voltage input, 500Ω of current input. 	
Analog input	AI3-GND	Analog input terminal 3	 Input range:DC 0V~10V/4mA~20mA,chosen by jumper JP5 on control board. Input impedance: 22kΩ of voltage input, 500Ω of current input. Factory default:J6 connected to 1-2 Keyad keyboard potentiometer. If AI3 is needed to be connected, please jump 2-3. When using extended function card AI3x, please take off J6. 	
Digital	DI2-SP Digital Input 2 2. Input impedance:4.7kΩ. DI3-SP Digital Input 3 3. Electrical level input range:9V~30V.			
Input	DI5-SP	Digital Input 5	1. Input impedance:2.4 kΩ.	
	DI6-SP	Digital Input 6	-	
	HDI	High-speed pulse	DI5 can be used as high-speed pulse input channel.	
	DI5-SP	input terminal	Maximum input frequency:100kHz.	
Analog output	AO1-GND	Analog output 1	The voltage or current output is determined by jumper J1 on the control panel.	

			Output voltage range: 0V to 10V.
			Output current range: 0mA to 20mA.
			The voltage or current output is determined by jumper
	AO2-GND	Analog output 2	J2 on the control panel.
	AUZ-GND	Analog output 2	Output voltage range: 0V to 10V.
			Output current range: 0mA to 20mA.
			Optical coupling isolation, dual polarity open collector
	DO1-COM	Digital output 1	output.
Distal	DO1-COM	Digital output 1	Output voltage range:0V to 24V.
Digital			Output current range:0mA to 50mA.
Output	FM-COM	High-speed pulse output	When used as high-speed pulse output , maximum
			frequency can reach 100kHz. Function code P5.00 as
			constraints.
Relay	TB1-TC1	Normally closed	
output	TA1-TC1	Normally open	Contact driving capacity:AC250V,3A,COSø=0.4.
	J12	Extended function	28 needle terminals , for selectable card please refer to
		card interface	interface configuration, table 3-3.3.
Auxiliary interface	140		14 needle terminals , for selectable card please refer to
	J13	PG card interface	interface configuration, table 3-3.3.
	J7	External keyboard	Edward
		interface	External keyboard.

2-4 Terminal Wiring

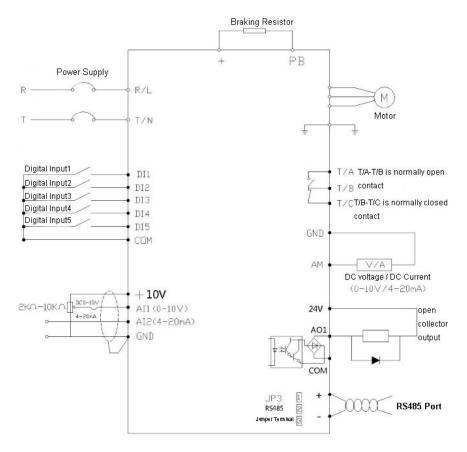


Figure 2-5 Terminal Wiring Diagram

1) Digital input terminal

It needs to employ shielded cable generally, with wiring distance of no longer than 20 meters. When valid driving is adopted, necessary filtering measures shall be taken to prevent the interference to the power supply.

It is recommended to use the contact control mode. a)DI terminal wiring method (The drain wiring mode)

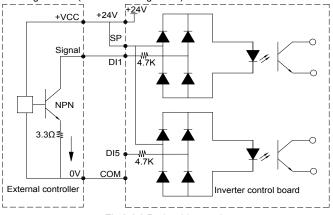
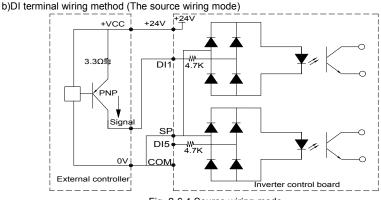
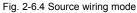




Fig.2-6.3 Drain wiring mode

This is one of the most commonly used connection mode. If you use an external power supply, J9 jumper must be removed, and connect the external positive power supply to SP,while negative power supply to DI port.

This connection mode must make SP of jumper J9 connect to COM port, and connect +24V and public terminal of external controller together. If you use an external power supply, jumper J9 must be removed, and connect external negative power supply to SP ,while positive power supply to DI port.

2) Digital output terminal

When drive relay is essencial for digital output terminal, you should add absorption diode to

both sides of relay coil. Or +24V dc power supply will be easily damaged. Caution: The polarity of the absorption diode must be installed correctly according to the picture below. Or +24V dc power supply will immediately get burnt after digital output terminal outputs.

Fig. 2-6.5 Digtal output terminal wiring diagram

2-6 Standby circuit

Inverter fault or jump may cause great breakdown loss or other accident. To avoid this happens, please add the standby circuit below to ensure security.

Note: Confirm and test the running characteristic of the standby circuit, make sure that the industrial phase and the converter phase are in the same direction.

Section III. Fittings

3-1 Connection with peripheral devices

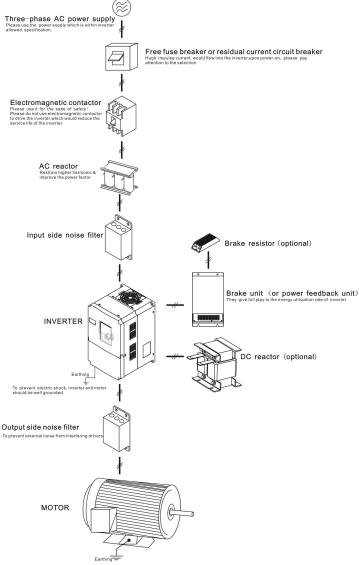


Fig 3-1-1 Connection diagram of the product and peripheral devices

Section III. Fittings 3-1-2 Peripheral Electric Parts of FIE1				
Part Name	Installation Location	Function Description		
Circuit breaker	The front-end of the input circuit	Disconnect the power supply in case of downstream equipment is over current		
Contactor	Between the circuit breaker and the inverter input side	Power-on and power-off of the inverter. Frequent power-on/power-off operation (at least once per minute) on the inverter should be avoided		
AC input reactor	Input side of the inverter	 Improve the power factor of the input side: 1.Eliminate the high order harmonics of the input side effectively, and prevent other equipment from damaging due to voltage waveform deformation. 2.Eliminate the unbalanced input current due to the unbalanced power phases. 		
EMC input filter	Input side of the inverter	 Reduce the external conduction and radiation interference of the inverter; Reduce the conduction interference flowing from the power end to the inverter, thus improving the anti-interference capacity of the inverter. The common size of 3-phase EMI noise filter is shown as following: confirm the power supply is 3-phase three lines or 3-phase four lines or single phase. Grounding wire is as short as possible, try to place the filter near the inverter. Please choose EMI filter when the inverter is used in residential area, commercial area, science area as well as situations where higher demand to prevent radio interference is needed or meeting CE, UL, CSA standard but existing equipment that anti- interference ability is not sufficient. If needing the filter, please connect with the company. 		
DC reactor	FIE1 series can adopt external DC reactor according to the need.	Improve the power factor of the input side: 1.Improve the overall efficiency and thermal stability 2.Effectively reduce the influence of high order harmonics at the input side on the inverter and reduce the external conduction and radiation interference.		
AC output reactor	Between the inverter output side and the motor, close to the inverter	The inverter output side generally has higher harmonic.When the motor is far from the inverter, since there are many capacitors in the circuit, certain harmonics will cause resonance in the circuit and bring in the following results: 1.Degrade the motor insulation performance and damage the motor for the long run 2.Generate large leakage current and cause frequent inverter protection action		

27

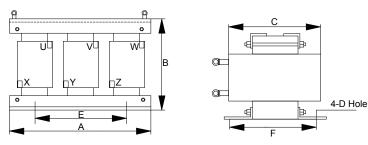

		3.In general, if the distance between the inverter and the motor exceeds 100 meters, output AC reactor should be installed
Output EMI filter	Between the inverter output side and the motor, close to the inverter	The fittings can restrain the disturbance noise and lead line leak current produced in the output side.

Table:3-1.1

3-2 Mounting hole dimensions

3-2-1 Shape&dimension of AC input reactor

Common specification of AC input reactor' shape & dimension:

Shape & dimension:

Specification		Physical Dimension (mm)						
Voltage	Capacity (kW)	А	В	С	D	E	F	Weight (kg)
200V	0.4	155	125	95	7	89	60	3.0
~	0.75	155	125	95	7	89	60	3.0
230V	1.5	155	125	95	7	89	60	3.0

Table:3-2.1

3-2-2 Braking unit & Braking resistance

When customers choose the type with braking, there will be braking unit inside the inverter, maximum braking torque is 50%. Please refer to the table below and choose the matched braking resistance separately.

Specification	Power of Inverter (kW)	Brake resistance(Ω)	Power of brake resistance(W)
	0.4	200	70
220V	0.75	200	120
	1.5	100	300

Table:3-2.2

If you need accessories in the table, please declare in order.

For larger built-in braking torque, please use the VTDRIVE TECHNOLOGY LIMITED braking unit. You can refer to VTDRIVE TECHNOLOGY LIMITED braking unit manual for details.

Other large power models do not contain a built-in braking. If large power model need to be equipped with braking function, please choose VTDRIVE TECHNOLOGY LIMITED braking unit. External DC reactor installation:

For FIE1 series inverter, external DC reactor can be ordered according to your needs. When installation, you should tear down copper platoon between + and PB of inverter main circuit. And then add reactor between + and PB, wiring between reactor terminals and inverter terminals + and PB have no polarity.

Section III. Fittings

3-2-3 Specifications of circuit breaker, cable and contactors				
Specification	Circuit breaker (MCCB) (A)	Input/output cable (copper core cable) mm2	Rated working current of contactor A (Voltage 380V or 220V)	
FWI-FIE1-d04	10A	1.5	10	
FWI-FIE1-d75	16A	2.5	10	
FWI-FIE1-1d5	20A	2.5	16	

Table:3-2.3

Section IV. Keyboard Operation

4-1 Keyboard size 4-1-1 FIE1 keyboard specification

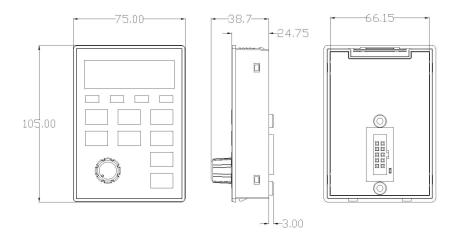


Fig. 4-1.1

4-2 Display Interface

Modification of function parameter, monitoring of inverter operation, control of inverter operation (start and stop) can be performed through the operation panel. Its shape and function area are shown as below:

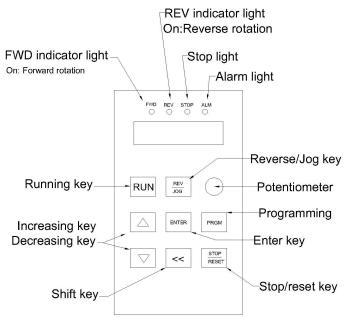
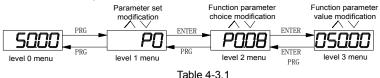
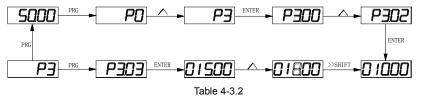



Fig. 4-2.1

4-3 Examples for parameter setting

4-3-1 Description of function code viewing and modification method


The operation panel of FIE1 inverter adopts three-level menu structure to perform parameter setting. The three-level menu includes: function parameter group (level 1 menu) \rightarrow function code (level 2 menu) \rightarrow setting value of function code (level 3 menu). The operation process is as shown in Figure below.

Caution: When operating on level 3 menu, press PRG key or ENTER key to return to level 2 menu. The difference between ENTER and PRG keys is that pressing ENTER KEY will save the setup parameter and return to level 2 menu and then automatically shift to the next function code, while pressing PRG key will directly return to level 2 menu without saving the

parameter, and it will return to the current function code.

Take the modification of function code P3.02 (ranging from 10.00Hz to 15.00Hz) as an example. (The boldface bit indicates the flashing bit).

In level 3 menu, if the parameter has no flashing bit, it indicates that the function code cannot be modified. The possible reasons include:

1) The function code is an unchangeable parameter, such as actual detection parameter, running record parameter, etc.

2) The function code cannot be modified in running status but can be modified after the unit is stopped.

4-3-2 Parameter display mode

Parameter display mode is mainly established to view different arrangement forms of function parameters according to user's actual needs. 3 kinds of display mode:

Name	Description
E matien anna teanna de	Sequence display inverter function parameters ,there are
Function parameter mode	P0~PF, A0~AF, U0~UF fuction groups respectively.
	User set individual function parameters(32 at most), parameters
User set parameter mode	that needed to be displayed can be set through PE group
User modify parameter mode	Inconsistent with factory default parameters

Relevant function parameters PP.02, PP.03, set as below:

Parameters display attributes		ay mode	Default value	11	
		1bit	U group display selection		
		0	No display		
PP.02		1	Display		
	Set range	10bit	A group display selecton		
		0	No display		
		1	Display		
		ter mode	Default		
	display selection		value	00	
	Set range	1bit	User set parameter display selection		
PP.03		0	No display		
		1	Display		
		10bit	User modify parameter display selection		
		0	No display		
		1	Display		

Table 4-3.2

When there is 1bit display existing in the individual parameter mode display selection(PP.03), you can enter different parameter display mode by pressing PRG+>>/SHIFT key at the same time. Each parameter display codes:

Parameter display mode	Display
Function parameter mode -FunC	-FunC
User set parameter mode -USEt	-USEE
User modify parameter mode -UC	-UC

Table 4-3.3

Switching mode as below:

E.g:To switch current function parameter mode to user set parameter mode.

Fig. 4-3.3

4-3-3 User set parameter operation mode

User set menu is established for quick checkup and modification. The display mode is "uP3.02",which represents function parameter P3.02. It has the same effect of modifying parameter in user set menu and normal programming state.

Function parameters of user set menu come from PE group. PE group chooses function parameter:when PE is set to P0.00, it means no choosing, totally 30 functions can be set. If display "NULL" when entering menu, it means user set menu is null.

16 parameters have been stored at initial time for user's convenience:

P0.01:Control mode	P0.02:Command source selection			
P0.03:Main frequency source selection P0.07:Frequency source selection				
P0.08:Preset frequency	P0.17:Acceleration time			
P0.18:Deceleration time	P3.00:V/F curve set			
P3.01:Torque boost	P4.00:DI1Terminal function selection			
P4.01:DI2 terminal function selection	P4.02:DI3 terminal function selection			
P5.04:DO1 output selection	P5.07:AO1 output selection			
P6.00:Startup mode	P6.10:Stop mode			
Users could modify the user set parameter according to specific need of your own.				

4-3-4 Check method of state parameter

When the inverter is in stop or running status, multiple status parameters can be displayed. It can select if this parameter is to be displayed in binary bit with the function codes P7.03 (running parameter1), P7.04 (running parameter2) and P7.05(stop parameter).

In stop status, there are 4 running state parameter:set frequency, bus voltage,analog input voltage Al1, analog input voltage Al2 which of them are of default display.Other display parameters respectively:DI input state,DO output state,analog input voltage Al3, actual count value, actual length value, PLC running steps, load speed display, PID set, PULSE input pulse frequency and 3 reserved parameters (whether to display or not is determined by function code P7.05 binary bit choice). Selected parameter are switched in sequence order.

In running status, there are a total of 5 running status parameters, including:setup frequency, running frequency, bus voltage, output voltage,output current ,which of them are of default display. Other display parameters respectively :output power, output torque, DI input state, DO output state, analog input voltage AI1, analog input voltage AI2, analog input voltage AI3, actual count value, actual length value, linear velocity, PID set, PID feedback etc. Whether to display or not is determined by function code P7.03, P7.04 binary bit choice. Selected parameter are switched in sequence order.

When inverter power on after powered off, the display parameter is the one that chosen before power off as default.

4-3-5 Password Setting

The inverter provides user password protection function. When PP.00 is set to non-zero value, it is user password and enabled after exiting the function code editing status. When the user presses the PRG key again, "-----"will be displayed to require the user to enter user password, or the user cannot enter the general menu.

To cancel the password protection function, the user needs to enter the relevant interface through password, and change the PP.00 setting to 0.

4-3-6 Motor parameter automatic tuning

Vector control running mode:before running, user must accurately input motor nameplate parameters. FIE1 series inverter will be matching standard motor parameter according to this nameplate. Vector control methods are very much dependent on motor parameters, to get good control performance, accurate control motor parameters must be acquired. Motor parameter auto tuning procedure is as follows:

Firstly, select command source(P0.02) as operation panel command channel. Secondly, input parameters below in accordance with motor actual parameter:

Motor selection		Parameter
	P1.00:Motor type selection	P1.01:Motor rated power
Motor 1	P1.02:Motor rated voltage	P1.03:Motor rated current
	P1.04:Motor rated frequency P1.	05:Motor rated revolving speed
	A2.00:Motor type selection	A2.01:Motor rated power
Motor 2	A2.02:Motor rated voltage	A2.03:Motor rated current
	A2.04:Motor rated frequency A2.	05:Motor rated revolving speed
	A3.00:Motor type selection	A3.01:Motor rated power
Motor 3	A3.02:Motor rated voltage	A3.03:Motor rated current
	A3.04:Motor rated frequency A3.	05:Motor rated revolving speed
	A4.00:Motor type selection	A4.01:Motor rated power
Motor 4	A4.02:Motor rated voltage	A4.03:Motor rated current
	A4.04:Motor rated frequency A4.	05:Motor rated revolving speed

Table 4-3.4

E.g:Asynchronous motor parameter tuning

If motor and the load can be totally separated, please select P1.37 (Motor 2\3\4 as A2\A3\A4.37) to 2(Asynchronous machine complete tuning), then press RUN key on keyboard panel, inverter will automatically calculate the motor of the following parameters:

Motor selection	Parameter
	P1.06: Asynchronous motor stator resistance
	P1.07: Asynchronous motor rotor resistance
Motor 1	P1.08: Asynchronous motor leakage inductance
	P1.09: Asynchronous motor mutual inductance
	P1.10: Asynchronous motor no-load current
	A2.06: Asynchronous motor stator resistance
	A2.07: Asynchronous motor rotor resistance
Motor 2	A2.08: Asynchronous motor leakage inductance
	A2.09: Asynchronous motor mutual inductance
	P2.10: Asynchronous motor no-load current
	A3.06: Asynchronous motor stator resistance
	A3.07: Asynchronous motor rotor resistance
Motor 3	A3.08: Asynchronous motor leakage inductance
	A3.09: Asynchronous motor mutual inductance
	P3.10: Asynchronous motor no-load current
	A4.06: Asynchronous motor stator resistance
	A4.07: Asynchronous motor rotor resistance
Motor 4	A4.08: Asynchronous motor leakage inductance
	A4.09: Asynchronous motor mutual inductance
	P4.10: Asynchronous motor no-load current

Table 4-3.5

If motor and the load can not be totally separated, please select P1.37(Motor 2\3\4 as A2\A3\A4.37) to 1(Asynchronous machine static tuning), then press RUN key on keyboard panel.

4-4 Test running

FIE1 General machine type factory setting value

Code	Factory setting	Description
P0.01	0	Speed sensorless vector control(SVC)
P0.02	0	Operation panel command channel(LED OFF)
P0.03	4	AI3(Potentiometer)

Users set motor parameters P1.00~P1.05 to correct values, after parameters auto tuning, motor operation can be directly controlled through keyboard, while frequency can be set through keyboard potentiometer.

Section V. Parameter Function Table

Caution:

The symbols in the function table are explained as follows:

" ★ ":indicates that the parameter set value cannot be modified when the inverter is in the running status.

•"indicates that the parameter value is the actual detection record and cannot be modified.

"☆":indicates that the parameter set value can be modified when the inverter is in stop status and in running status.

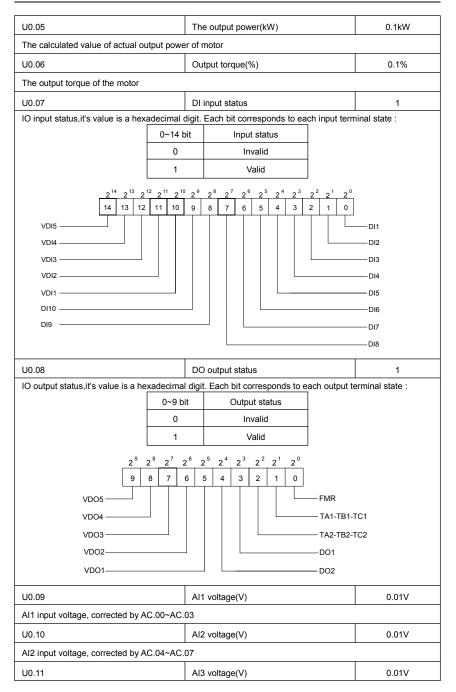
"▲":indicates that the parameter is "Factory default parameter" and can be set only by the manufacturer, and the users are forbidden to perform any operation.

"-":indicates that the parameter factory value is relevant to power or model, for specifications please refer to corresponding parameter description.

"Change limit" indicates if the parameter is adjustable during operation.

When PP.0 is set to non-zero value, it means that the parameter protection password is set and only when correct password is input can the user enter the parameter menu. To cancel the password, PP.00 should be set to 0.

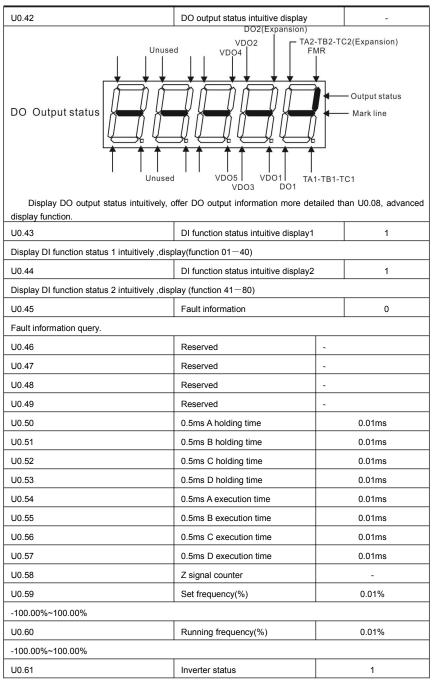
In the user set parameter mode , parameter menu is not protected by password protection.


P group, A group are of basic function parameters, U group is the monitor function group.

5-1 Monitor function group: U0.00-U0.61

U0 parameter group is used to monitor inverter running status . Customers can check through panel for field commissioning as well as read parameter value through communication for position machine monitoring. Among which, U0.00~U0.31 are defined for running or stop monitor parameters by P7.03 and P7.04.

For specific parameter function code, parameter name and minimum unit, please refer to the table below.


Function code	Designation	Unit			
U0.00	Running frequency(Hz)	0.01Hz			
Inverter current actual setting frequency					
U0.01	Set frequency(Hz)	0.01Hz			
Inverter current actual output frequency					
U0.02	DC bus voltage(V)	0.1V			
Detection value of DC bus voltage					
U0.03	The output voltage(V)	1V			
Inverter actual output voltage					
U0.04	Motor output current(A)	0.01A			
Valid value of motor actual current					

AI3 input voltage, corrected by AC.08~AC.	11	
U0.12	Count value	1
Fb function group count function Pb.08~Pt	p.09	
U0.13	Length value	1
Fb function group fixed length function Pb.	05~Pb.07	
U0.14	Load speed display	1
Motor actual running speed		
U0.15	PID set point	1
PID percentage of reference value for runr	ning adjustment.	-
U0.16	PID feedback	1
PID percentage of feedback value for runn	ing adjustment.	
U0.17	PLC stage	1
PLC program running stage-display		
U0.18	PULSE pulse input frequency (kHz)	0.01kHz
Display PULSE pulse input frequency, unit	0.01Khz	
U0.19	Speed feedback (unit 0.1Hz)	0.1Hz
PG speed feedback, accurate to 0.1hz		
U0.20	Surplus running time	0.1Min
Display surplus running time, used for regu	ular operation control.	
U0.21	AI1 voltage before correction	0.001V
Al1 voltage before correction ,used for AC	function group parameter AC.00~AC.03 to c	orrect AI1 voltage
U0.22	Al2 voltage before correction	0.001V
Al2 voltage before correction ,used for AC	function group parameter AC.04~AC.07 to c	orrect AI2 voltage
U0.23	Al3 voltage before correction	0.001V
AI3 voltage before correction ,used for AC	function group parameter AC.08~AC.11 to c	orrect AI3 voltage
U0.24	Linear velocity	1m/Min
Linear velocity is calculated according to and constant linear velocity control.	angular velocity and diameter, used for cor	istant tension control
U0.25	Current power on time	1Min
The cumulative power on time of the inver	ter.	
U0.26	Current running time	0.1Min
The cumulative running time of the inverte	r.	
U0.27	PULSE pulse input frequency	1Hz
Display PULSE pulse input frequency , un	it 1Hz.	
U0.28	Communication set value	0.01%
Communication set value		

U0.29	Encoder feedback speed	0.01Hz
PG feedback speed, accurate to 0.1hz		
U0.30	Main frequency X display	0.01Hz
P0.03 main frequency source set frequence	2y	
U0.31	Auxiliary frequency Y display	0.01Hz
P0.04 auxiliary frequency source set frequ	lency	
U0.32	View arbitrary memory address value	1
To view arbitrary memory address, advance	ced commissioning function.	
U0.33	Synchronous motor rotor position	0.0°
Synchronous motor rotor position, which a	djusting angle of encoder U phase and back	EMF U phase.
U0.34	Motor temperature	1°C
Display motor temperature. Other device measuring point.	e temperature can also be tested through o	different temperature
U0.35	Target torque(%)	0.1%
Target torque setup. In torque control mod	e, it is used to check the set target torque.	1
U0.36	Rotary variable position	1
It's rotor position when speed feedback.		
U0.37	Power factor angle	0.1
Current power factor angle,power factor=0	COS(angle),angle=0,maximum power.	
U0.38	ABZ position	0.0
ABZ incremental feedback position inform	ation of encoder calculation.	
U0.39	VF target voltage separation	1V
VF target voltage when power supply sepa	arating.	
U0.40	VF output voltage separation	1V
VF output voltage when power supply sep	arating.	
U0.41	DI input status intuitive display	-
DI Input status	Expansion DI7 (pansion DI9 DI5 DI3 DI5 DI3 DI1 DI5 DI3 DI1 Input Mark pansion DI10 DI6 DI4 DI2 Expansion DI8 offer DI input information more detailed the	
display function.		

Section V. Parameter Function Table

5-2 Basic function group: P0.00-P0.28

Code	Description/Display	Setting Range		Factory Setting	Change Limit		
D0.00	OD tras disalau	G type(constant torque load type)	1				
P0.00	GP type display	P type(draught fan,pump load type)	2	-	•		
This par	This parameter is only for the use of viewing the factory model. It is can not be modified.						
1: It is a	pplicable to the constant torque	load of specified rated parameter					
2: It is a	pplicable to the variable torque I	oad of specified rated parameter(draught fan	,pump	load type)			
		Speed sensorless vector control(SVC)	0				
P0.01	Motor 1 control mode	Speed sensor vector control(FVC)	1	0	*		
		V/F control	2				

0: Speed sensorless vector control

It refers to the open-loop vector control that is generally applied to high performance control field. One inverter can only drive one motor. E.g.machine tool, centrifugal machine, fiber drawing machine, injection molding machine' load etc.

1: Speed sensor vector control

It refers to the closed-loop vector control and encoder must be added to the motor end. Inverter must be matching with the same type PG card of the encoder. This control mode is suitable for high precision speed control or torque control field. One inverter can only drive one motor. E.g:high speed papermaking machinery , hoisting machinery , elevator'load etc.

2: V/F control

V/F control mode is suitable for fields that load demand is not high or one inverter can drive multiple motos. E.g:draught fan, pump' load etc.

Tips:Motor parameters must be indentified before choosing vector control mode. Only accurate motor parameters can play the advantage of vector control mode. Users can get better performance by adjusting speed regulator group P2 parameters(motor 2,motor 3,motor 4 respectively for group A2,A3,A4)

FVC is generally used for permanent magnet synchronous motor, while part of the small power applications can select V/F control mode. FIE1 series support specific models of permanent magnet synchronous motor sensorless vector control mode. Please refer to FIE1 users manual.

		Operation panel command channel (LED off)	0		
P0.02	Command source selection	Terminal command channel(LED on)	1	0	☆
		Serial port communication command channel (LED flashing)	2		

Inverter control commands include: run, stop, forward rotation (FWD), reverse rotation (REV), forward jog (FJOG), reverse jog (RJOG), etc.

0: Operation panel command channel ("LOCAL/REMOT" LED off);

Perform running command control with RUN, MF.K and STOP/RESET keys on the operation panel.

1: Terminal command channel ("LOCAL/REMOT" LED on);

Perform running command control with multifunctional input terminals such as FWD, REV, FJOG, RJOG, and so on.

2: Serial port communication command channel ("LOCAL/REMOT" LED flashing).

The running command is given by the host computer via the communication mode. When the item is choosen, it must be equipped with communication card(Modbus RTU, Profibus DP card, CANlink card, users programmable control card or CANopen card and so on).

For the communication protocol, please refer to "PD communication function group" and supplementary explanation of corresponding communication card for details.

Sup	Supplementary explanation for communication card is allotted with communication card. This manual					
contains	a brief description of communic	cation card.				
		Digital setup (Preset frequency P0.08, UP/DOWN can be modified, power off without memory)	0			
		Digital setup (Preset frequency P0.08, UP/DOWN can be modified, power off with memory)	1			
		Al1	2			
P0.03	Main frequency source X	Al2	3	4	*	
. 0.00	selection	AI3 (Potentiometer)	4			
		Pulse setup (DI5)	5			
		MS command	6			
		Simple PLC	7			
		PID setup	8			
		Communication setup	9			

This parameter is used to select the main reference frequency input channel. Totally 10 main reference frequency channels:

0: Digital setup(power off without memory)

Initial value of set frequency equals to P0.08 "preset frequency". User can change inverter set frequency value through keyboard \land key and \lor key (or multi-function input terminal UP,DOWN).

Inverter power on after powered off, frequency set value restored to P0.08 "Preset frequency".

1: Digital setup(power off with memory)

Initial value of set frequency equals to P0.08 "preset frequency". User can change inverter set frequency value through keyboard \land key and \lor key (or multi-function input terminal UP,DOWN).

Inverter power on after powered off, frequency set value restored to the value that equals to setup of last power off time. Correction is memorized through keyboard $~\wedge~$ key and $~\vee~$ key or terminal UP,DOWN.

What needs to be reminded is, P0.23 is "Digital setup frequency memory selection". P0.23 is used to select correction whether to be memorized or cleared and is relevant to stop, irrelevant to power off memory, please pay attention during operation.

2: AI1

3: AI2

4: AI3(Potentiometer)

Frequency is determined by analog input terminal. FIE1 series control board offers 3 analog input terminal(AI1,AI2,AI3), optional device VTdrive C1 card can offer 1 isolated analog input terminal (AI3x).

AI1, AI2, AI3 can be chosen as 0V~10V voltage input as well as 4mA~20mA current input by the jumper J3, J4, J5 on control board. AI3x is -10V~10V voltage input, jumper J6 should be disconnected.

Al1, Al2, Al3 input voltage value has a corresponding relationship with target frequency, users can choose them at will. FIE1 offers 5 groups of corresponding relation curve, which 3 of them are linear relationship(2-point correspondence), 2 of them are 4-point correspondence(any curve among them). User can set through P4 group or A6 function code.

Function code P4.33 is used to set Al1~Al3 3-channel analog input. Choose 1 curve among the 5 respectively. For specific correspondence please refer to P4, A6 groups.

5: Pulse setup(DI5)

Pulse setup is set through terminal pulse. Signal standard:voltage range 9V~30V, frequency range 0kHz~100kHz. Set pulse can be only input through multi-function input terminal DI5.

Relationship between DI5 input pulse frequency and corresponding settings is set through P4.28~P4.31.

It is linear relationship(2-point corresponden	nce). Pulse input 100.0% refers to the per	centage	e of P0.10	
6: MS command				
MS command running mode is set th There are 4 MS command terminals with 16	hrough different combination mode of d	•		
16 "MS command". "MS command" is perce	•			
	as MS command terminal, user should			aroun
For specifications please refer to P4 group.		Set un	ougii i 4 i	group.
7: Simple PLC				
	running frequency source can be swite	ched to	anv freq	uencv
command during 1~16.	······································			,
User can set frequency command rete	tention time and acceleration/deceleratio	n time	respective	ely.For
specifications please refer to PC group				
8: PID				
Running frequency is the output of PIE	D control process. Generally used for fie	eld proc	ess close	d-loop
control.				
When PID is choosen, user should set i	relevant parameters of PA group "PID fur	nction".		
9: Communicaton setup				
	requency source that setting through cor	nmunic	ation meth	hod of
position machine.				
	nunication modes:Modbus, Profibus DP,	CANOP	en, CAN	link. 4
kinds of communication can not be used at t		indo of	communi	option
cards are optional.User can select to buy ac	led during the use of communication.4 k			cation
	Digital setup (preset frequency P0.08,	1 0.20 0	concerty.	
	JP/DOWN adjustable, power off without	0		
	nemory)	Ŭ		
	Digital setup(preset frequency P0.08,			
	JP/DOWN adjustable, power off with	1		
	nemory)			
A	N1	2		
P0.04 Auxiliary frequency source Al	12	3	0	L .
Y selection	I3(Potentiometer)	4	0	
PI	PULSE setup (DI5)	5		
м	IS command	6		
		Ŭ		
	Simple PLC	7		
Si		-		

When the auxiliary frequency source is used as independent frequency reference channel (i.e. frequency source switching from X to Y), it is used in the same way as the relative specifications of P0.03.

When the auxiliary frequency source is used as overlap reference (i.e. frequency source selection switching from X plus Y or X to X plus Y), it has special points as follows:

1. When the auxiliary frequency source is digital reference, the preset frequency (P0.08) is nonsensical, and it needs to adjust the main reference frequency through the keys " \land "and " \lor " of the keyboard (or UP and DOWN of multifunctional input terminals).

2. When the auxiliary frequency source is analog input reference (Al1, Al2, Al3) or pulse input reference, 100% of input setup is relative to the auxiliary frequency source range, and can be set through P0.05 and P0.06.

Pro	ompt: There is difference betw cy source X setup value. That is	veen the	reference, it is similar to the analog auxiliary frequency source Y se 20.03 and P0.04 cannot use the sar	election		
	Auxiliary frequency source		e to maximum frequency	0		
P0.05	Y range selection	Relativ	e to frequency source X	1	0	☆
P0.06	Auxiliary frequency source Y range	0%~15	50%		0	☆
Wh		ion is fre	quency overlap reference(P0.07 is	set to	1. 3 or 4)itis
used to	determine the adjustment range object within the range. If it i	ge of au	xiliary frequency source. P0.05 is e to main frequency, that range v	used to	o determir	ne the
		1bit	Frequency source selection			
		Main fr	equency source X	0		
			auxiliary operation result (10bit ine operation relationship)	1		
			ing between X & Y	2		
		Switchi	ing between X & option 1	3		
	Frequency source stacking		ing between Y & option 1	4		
P0.07	selection	10bit	Relationship between main / auxi frequency source	liary	00	☆
		Main+a	auxiliary	0		
		Main-auxiliary		1		Í
			nain frequency source X, auxiliary	2		
		MIN(m	ain frequency source X, auxiliary ncy source Y)	3		
the com 1bit :Fre 0:M Ma 1:M 2:S Wh cor 3:S Wh cor 4:S Wh cor 10bit :F	pound of main frequency X and equency source selection hain frequency source X in frequency source X is the targ lain / auxiliary operation result is witching between main frequency en terminal 18 (frequency swi thrary, auxiliary frequency Y is the witching between main frequency en terminal 18 (frequency swi thrary, auxiliary frequency Y is the witching between auxiliary frequency Y is the witching between auxiliary frequency Y is the	et freque targe fre y source tching) is target fr y X and n tching) is target fr ency Y and hing) is ir frequenc ary freque	ncy. equency,operation relationship see " X and auxiliary frequency source Y is invalid, main frequency X is tar requency. main / auxiliary operation result is invalid, main frequency X is tar requency. nd main / auxiliary operation result ivalid, auxiliary frequency Y is the tar cy. ency source	10 bit" f get fre get fre	or details. quency. C quency. C	on the
			frequency. It realizes frequency stac	cking se	t function.	
	Aain frequency source X - auxilia	-		3.50		

Ope	eration result of main - auxiliary	is target frequency.					
2:N	IAX(main frequency source X, a	uxiliary frequency source Y)					
Cho	oose bigger absolute value of the	e two as target frequency					
3:N	IIN(main frequency source X, au	uxiliary frequency source Y)					
Cho	oose smaller absolute value of th	ne two as target frequency.					
Bes	ides, when frequency source is	main & auxiliary operation, users can set o	ffset fre	equency th	rough		
P0.2	21. By stacking offset frequency	y on main & auxiliary operation result, it cou	ld flexil	ble cope v	vith all		
kinc	ls of needs .						
P0.08	Preset frequency	0.00Hz to maximum frequency(It is only va when frequency source is set to "digital set		50.00Hz	☆		
Wh	en set the frequency source to	"digital setting" or "terminal UP/DOWN", the	param	eter value	is the		
initial va	lue of the inverter frequency dig	ital setting.	i				
P0.09	Running direction	Consistent direction	0	0	\$		
1 0.00		Reverse direction	1		~		
Moo	dification of this parameter can	change the rotary direction of the motor with	out cha	anging any	other		
paramet	ters, which is equivalent to the r	ole of switching the rotary direction through	adjusti	ng any two	o lines		
of the m	otor (U, V and W).						
Wh	en needing to change the rotary	direction of the motor, users can modify this	s param	neter rathe	r than		
	ne wiring of the motor.						
		is restored to the factory default value, the					
		rudently in the applications where the moto	r rotary	direction	is not		
allowed	to change.						
P0.10	Maximum frequency	50.00Hz~320.00Hz		50.00Hz	*		
Wh	en analog input, pulse input(DI5	i), MS command etc are used as frequency	source,	their resp	ective		
100% ar	re relatively calibrated through P	0.10.					
FIE	1 maximum frequency could re	ach 3200Hz. Users can set decimal digits	of frequ	ency com	mand		
through	P0.22 to balance the idex of free	quency command resolution and frequency in	nput rar	nge.			
		resolution ratio is 0.1Hz, P0.10 setting range					
When P	0.22 is set to 2, frequency resolution	ution ratio is 0.01Hz, P0.10 setting range is 5	0.00Hz	~320.00H	z.		
		P0.12 setup	0	-			
		Al1	1	-			
P0.11	Frequency source upper limit	AI2	2	0	*		
	Trequency source upper limit	AI3(Potentiometer)	3	-			
		PULSE setup	4	-			
		Communication setup	5				
lt de	efines the source of frequency	upper limit. Frequency upper limit comes fro	m digit	al setup (F	P0.12)		
or analo	g input channel. When upper lir	nt is set through analog input, 100% of analog	og inpu	t correspo	nds to		
P0.12.							
E.g	When winding control field	is in the torque control mode, to	avoid	material	break		
phenom	enon, users can set upper limit	frequency through analog value. When runr	ning fre	quency re	aches		
value of	value of upper limit, inverter maintains operation at the upper limit frequency.						
P0.12	Frequency upper limit	Frequency lower limit(P0.14) to maximum		50.00Hz	☆		
P0.13	Frequency upper limit offset	frequency(P0.10) 0.00Hz~maximum frequency P0.10		0.00Hz	\$		
			لمحصر				
		nalog value or PULSE setup, P0.13 will be y and analog setup value of frequency upp		•			
1 JUJUL 1	no againon or onset nequelle	, and analog setup value of negutiney upp					

Section V. Parameter Function Table

P0.14 Free When the run at frequer P0.15 Ca This fur frequency, the leak When the leak When the leak When the run the leak When the leak When the leak When the leak When the leak When the leak When the leak	the motor noise can be red kage current to the ground the carrier wave frequency	0.00Hz to fr the inverter is l inverter. Refe 0.5kHz~16.1 the carrier the uced, the ress and the interfr y is low, the ased, and the r is high, the and inverter	er to P8.14 function co OkHz frequency of the invo onance of the mechar erence of the inverter output current higher motor temperature ris motor loss is reduce	erter. By nical syst can be r harmor we will als	etails. y adjus tem ca educec	- sting the n be avoid	☆ carrie						
When the run at freque P0.15 Ca This fur frequency, the that the leak When the increased, the When the rise is reduce interference The adju	the running frequency of the lency lower limit or stop the arrier frequency unction is used to adjust the motor noise can be red kage current to the ground the carrier wave frequency the motor loss will be increa- the carrier wave frequency uced, but the inverter loss a will be increased. justment of carrier frequency	be inverter is linverter. Refe 0.5kHz~16.1 the carrier fuced, the rese and the interful y is low, the ased, and the <i>t</i> is high, the and inverter	ower than the freque er to P8.14 function co DkHz frequency of the invo onance of the mechan erence of the inverter output current higher motor temperature ris motor loss is reduce	erter. By nical syst can be r harmor we will als	etails. y adjus tem ca educec	it can sel	ect to						
run at freque P0.15 Ca This fur frequency, th that the leak When th increased, th When th rise is reduc interference The adju	ency lower limit or stop the arrier frequency unction is used to adjust the motor noise can be red kage current to the ground the carrier wave frequency the motor loss will be increa- the carrier wave frequency uced, but the inverter loss a will be increased. justment of carrier frequency	inverter. Refe 0.5kHz~16.1 the carrier t uced, the ress and the interfu y is low, the ased, and the / is high, the and inverter	er to P8.14 function co OkHz frequency of the invo onance of the mechar erence of the inverter output current higher motor temperature ris motor loss is reduce	erter. By nical syst can be r harmor	etails. y adjus tem ca educec	- sting the n be avoid	☆ carrie						
P0.15 Ca This fur frequency, th that the leak When th increased, th When th rise is reduc interference The adju	arrier frequency unction is used to adjust the motor noise can be red kage current to the ground the carrier wave frequency the motor loss will be increa the carrier wave frequency uced, but the inverter loss a will be increased. justment of carrier frequency	0.5kHz~16. the carrier to uced, the ress and the interfit y is low, the ased, and the / is high, the and inverter	OkHz frequency of the inv onance of the mechar erence of the inverter output current higher motor temperature ris motor loss is reduce	erter. By hical syst can be r harmor e will als	y adjus tem ca educec	n be avoid	carrie						
This fur frequency, th that the leak When th increased, th When th rise is reduc interference The adju	unction is used to adjust the motor noise can be red kage current to the ground the carrier wave frequency the motor loss will be increa- the carrier wave frequency uced, but the inverter loss a will be increased. justment of carrier frequency	the carrier of uced, the resu and the interfu- y is low, the ased, and the y is high, the and inverter	frequency of the inv onance of the mechar erence of the inverter output current higher motor temperature ris motor loss is reduce	nical syst can be r harmor e will als	tem ca educeo	n be avoid	carrie						
frequency, tř that the leak When tt increased, tř When tř rise is reduc interference The adju	the motor noise can be red kage current to the ground the carrier wave frequency the motor loss will be increa- the carrier wave frequency uced, but the inverter loss a will be increased. justment of carrier frequency	uced, the rest and the interfu- y is low, the ased, and the y is high, the and inverter	onance of the mechan erence of the inverter output current higher motor temperature ris motor loss is reduce	nical syst can be r harmor e will als	tem ca educeo	n be avoid							
When the rise is reduce interference The adju	the carrier wave frequency uced, but the inverter loss a will be increased. justment of carrier frequence	is high, the and inverter	motor loss is reduce		This function is used to adjust the carrier frequency of the inverter. By adjusting the carrier frequency, the motor noise can be reduced, the resonance of the mechanical system can be avoided, so that the leakage current to the ground and the interference of the inverter can be reduced. When the carrier wave frequency is low, the output current higher harmonic component will be increased, the motor loss will be increased, and the motor temperature rise will also be increased.								
rise is reduc interference The adju	uced, but the inverter loss will be increased. justment of carrier frequence	and inverter					ature						
Differen	Carrier freque	cy will influence	e the following items		reased	l, and thu							
Differen		ency	$low \rightarrow$	high									
Differen	Motor nois	e	big \rightarrow	small									
Differen	Output current wa	aveform	$poor \rightarrow$	well									
Differen	Motor temperature rise high \rightarrow low												
Differen	Inverter temperat	ture rise	$low \rightarrow$	high									
Differen	Leakage curr	rent	small→	large									
Differen	Radiation interfe	erence	small→	big									
lead to inve	nt power of inverter is set attention should be paid:if verter radiator temperature ager of overheating alarm.	f carrier frequ	ency is set higher that	an the fa	ctory s	et valule,	it wil						
P0.16 Ca	arrier frequency adjusting	No			0	0	☆						
	ith temperature	Yes			1	0	Ж						
Carrier frequency adjusting with temperature refers to the detecting of radiator temperature. When the temperature is high , carrier frequency automatically decreased to reduce the inverter temperature rise. On the contrary , when the temperature is low, carrier frequency gradually restored to the set value. This function could help to reduce the chance of inverter overheating alarm.													
P0.17 Ac	cceleration time 1	0.00s~6500	0s			-	☆						
P0.18 De	eceleration time 1	0.00s~6500	0s			-	☆						
reference fre The dec frequency (P	cceleration time means the requency(P0.25). cceleration time means the P0.25) to 0Hz.	time t2 need		decelera	ate fror								

Ou	tput frequency Hz								
reference	ion/deceleration e frequency equency								
		t							
Actual	Actual acceleration time								
Setting	acceleration time - t1	t2 Setting deceleration	n time						
	Fig.5-1 Acceler	ration/deceleration time schematic diagram							
		ed-up/speed-down time for selection, you c	an shift	through c	ligital				
-	rminal DI, 4 groups of them are	shown as follows:							
	OUP 1:P0.17, P0.18;								
	OUP 2:P8.03, P8.04;								
	OUP 3:P8.05, P8.06; OUP 4:P8.07, P8.08.								
		1 second	0						
P0.19	Acc./dec. time unit	0.1 seconds	1	1	*				
		0.01 seconds	2						
FIE1 offers 3 kinds of speed-up /speed down time unit to meet the need of all kinds of									
Cau	nged when modifying this funct	conds and 0.01 seconds. corresponding acceleration/deceleration tim ion parameter,special attention should be		• •					
P0.21	Auxiliary frequency source offset frequency	0.00Hz~Maximum frequencyP0.10		0.00Hz	☆				
Wh frequent	It is valid only at the time of main/auxiliary operation is choosen. When frequency source is main / auxiliary operation(P0.21 as offset frequency), it could make frequency set more flexible by stacking offset frequency on main & auxiliary operation as the final frequency set value.								
DO 00	Frequency command	0.1Hz	1						
P0.22	resolution	0.01Hz	2	2	*				
This parameter is used to dertermine all the function code resolution which is relevant to frequency. Frequency resolution is 0.1Hz, FIE1 maximum output frequency can reach 3200Hz. While frequency resolution is 0.01Hz, FIE1 maximum output frequency is 320.00Hz. Caution:Parameter (relating to frequency) decimal digits and corresponding frequency value will change through modifying P0.22. Special attention should be paid during operation.									
D0 00	Digital setup frequency	Without memory	0						
P0.23	memory selection upon stop	Memory	1	0	☆				
	s function is only valid when freq out memory	uency source is digital setup.							

Upon power fault or stop of the inverter, set the frequency value back to the setup value of "Preset Frequency" (P0.08). Frequency modification which set through keyboard " \land ", " \lor " or terminal UP,

DOWN is cleared.

1: Memory

Digital setup frequency is the retention that reserved at last stop time. Keyboard " \land ", " \lor " or terminal UP, DOWN to make the correction valid.

P0.24 Motor selection	Motor 1	0			
	Motor 2	1	0		
	Motor selection	Motor 3	2	0	*
		Motor 4	3		

FIE1 support applications that driving 4 motors in time-sharing. 4 motors can be set motor nameplate parameters, independent parameter tuning, control mode, parameters relating to operation performance respectively.

Motor 1 corresponding function groups are P1 group and P2 group. Motor 2, motor 3, motor 4 corresponding groups are A2 group, A3 group and A4 group respectively.

Users select current motor through P0.24 function code as well as digital input terminal DI. When function code selecton conflicting with terminal DI selection, DI terminal selection is priority.

		Maximum frequency(P0.10)	0		
P0.25	Acceleration / deceleration reference frequency	Set frequency	1	0	*
		100Hz	2		

Acceleration / deceleration time means the time needed for the inverter varying from 0Hz to the frequency of P0.25, Fig5.1 is acceleration / deceleration time schematic diagram.

When P0.25 is choosen to 1, acceleration / deceleration time is connected with set frequency. If set frequency change frequently, the motor acceleration will change, attention should be paid in applications.

	Frequency UP/DOWN	Running frequency	0		
P0.26	reference upon running	Set frequency	1	0	*

This parameter is only valid when frequency source is digital setting.

To select (through keyboard \land , \lor key or terminal UP/DOWN) the modifying method of set frequency, namely, target frequency is increasing/decreasing based on the running frequency or setting frequency.

The difference between the two settings become apparently in inverter acceleration and deceleration process.

		1bit	Operation panel command bound frequency source selection	b		
		Without	binding	0		
		Digital setup frequency source	1			
		Al1		2		
	Command source&frequency source binding	AI2		3		
P0.27		AI3(Pot	entiometer)	4	000	☆
		PULSE pulse setup(DI5)	5			
		MS com	imand	6		
		Simple	PLC	7		
		PID		8		
		Commu	nication setup	9		

10bit	Terminal command bound freque source selection	ency	
Without		0	
Digital s	setup frequency source	1	
Al1		2	
Al2		3	
AI3(Pot	entiometer)	4	
PULSE	pulse setup(DI5)	5	
MS con	nmand	6	
Simple	PLC	7	
PID		8	
Commu	nication setup	9	
100bit	Communication command bindin frequency source selection	ng	
Without	bound	0	
Digital s	setup frequency source	1	
Al1		2	
Al2		3	
AI3(Pot	entiometer)	4	
PULSE	pulse setup(DI5)	5	
MS com	nmand	6	
Simple	PLC	7	
PID		8	
Commu	nication setup	9	

It defines bound combination between 3 running command channels and 9 frequency setup channels, which is easy to achieve synchronous switching.

Frequency setup channels above have the same definition with P0.03 "main frequency source X selection", please refer to P0.03 for details. Different running command channels can bind the same frequency setup channel. When the command source is valid during command source & frequency source binding, set frequency source of P0.03~P0.07 is invalid.

P0.28		Modbus communication card	0		
	Communication expansion	Profibus.DP communication card	1	0	,
	card	CANopen communication card	2		v
		CANlink communication card	3		

FIE1 series offers 4 kinds of communication mode. All of the 4 need to be equipped with optional communication card .And they can not be used at the same time.

P0.28 is used to set the type of the optional communication card. When user replace the communication card , P0.28 should be properly set.

5-3 Parameters for motor 1: P1.00-P1.37

Code	Description/Display	Setting Range	Factory Setting	Change Limit	
		General asynchronous motor	0		
P1.00	Motor type selection	Variable frequency asynchronous motor	1	0	*
		Permanent magnet synchronous motor	2		
P1.01	Rated power	0.1kW~1000.0kW		-	*
P1.02	Rated voltage	1V~2000V		-	*
P1.03	Rated current	0.01A~655.35A(Inverter power≦55kW) 0.1A~6553.5A(Inverter power >55kW)		-	*
P1.04	Rated frequency	0.01Hz~maximum frequency	-	*	
P1.05	Rated revolving speed	1rpm~65535rpm		-	*
chooser For	n mode, users should accurately better VF or vector control per	ameplate parameters. No matter VF control y set the relating parameter according to the formance, users should tune the motor para- ionship with the accuracy of set motor name	motor meter.	nameplate The accur	e. acy of
P1.06	Asynchronous motor stator resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)		-	*
P1.07	Asynchronous motor rotor resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)			*
P1.08	Asynchronous motor leakage inductance				*
P1.09	Asynchronous motor mutual inductance	is motor mutual 0.1mH~6553.5mH(Inverter power <=55kW) 0.01mH~655.35mH(Inverter power >55kW)			*
P1.10	Asynchronous motor no load current	0.01A~P1.03(Inverter power <=55kW) 0.1A~P1.03(Inverter power >55kW)		-	*

P1.06~P1.10 are parameters for asynchronous motor. Generally, motor nameplate dosen't contain such parameters, users can get them throung inverter auto tuning. Among them, 3 parameters (P1.06~P1.08) can be get through "asynchronous motor static tuning", while all the 5 parameters as well as encoder phase, current loop PI etc can be get through "asynchronous motor complete tuning". When change the motor rated power (P1.01) or motor rated voltage (P1.02), inverter would automatically modify the P1.06~P1.10 parameter value and restore them to common standard of Y series motor parameter.

If the asynchronous motor is unable to be tuned, users could input above parameters with factory offered motor value.

P1.16	Synchronous motor stator resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)	-	*
P1.17	Synchronous motor D-axis inductance	0.01mH~655.35mH(Inverter power <=55kW) 0.001mH~65.535mH(Inverter power >55kW)	-	*
P1.18	Synchronous motor Q-axis inductance	0.01mH~655.35mH(Inverter power <=55kW) 0.001mH~65.535mH(Inverter power >55kW)	-	*
P1.19	Synchronous motor inductance resistance unit	0~12	0	*
P1.20	Synchronous motor back electromotive force coeff.	0.1V~6553.5V	0.1V	*

P1.21	Synchronous motor output	0~60000		0	*				
phase lack detection time P1.16~P1.20 are parameters for synchronous motor. Generally, motor nameplate dosen't contain such parameters, user can get them throung inverter auto tuning. Choose "synchronous motor complete									
tuning" mode for it's ability to get P1.16, P1.17, P1.18, P1.19 motor parameters. However, "synchronous									
motor static tuning" can only get values of synchronous motor encoder phase, installation angle etc.									
	When change the motor rated power (P1.01) or motor rated voltage (P1.02), inverter would								
automat	tically modify the P1.16~P1.20 p	parameter value.							
Use	ers could directly set the above	parameters with motor factory offered value.							
P1.27	Encoder pulses number	1~65535		2500	*				
To	To set ABZ or UVW incremental encoder pulse number per revolution.								
In t	he speed sensor vector control	mode, P1.27 must be set accurately. Or mo	otor wou	uld not no	rmally				
operate									
		ABZ incremental encoder	0						
		UVW incremental encoder	1						
P1.28	Encoder type	Rotary transformer	2	0	*				
		Sine / cosine encoder	3						
		UVW encoder	4						
FIE	1 support multiple encoder typ	es. Different encoder should be equipped	with dif	ferent PG	card.				
For spe	For specifications please refer to Appendix IV. All the 5 encoders are suitable for synchronous motor,								
while or	ly ABZ incremental encoder and	d rotary transformer are suitable for asynchr	onous i	motor.					
Afte	After installing the PG card, make sure that P1.28 is accurate according to actual situation.								
	ABZ incremental encoder AB	Forward	0	0					
P1.30	phase	Reserve	1	0	*				
Thi	s function code is only valid	to ABZ incremental encoder(P1.28=0).It	is us	ed to set	ABZ				
increme	ntal encoder AB signal phase se	equence.							
	•	otor and asynchronous motor. Users could	•						
phase s	equence through asynchronous	motor complete tuning or synchronous mot	or no-lo	ad tuning					
P1.31	Encoder installation angle	0.0°~359.9°		0.00	*				
Thi	s parameter is only valid to syn	chronous motor control mode. It is valid for	encod	er types o	of ABZ				
		encoder, rotary transformer, and UVW encod							
	•	motor complete / static tuning .lt's very im	portant	to operat	ion of				
Synchro		before synchronous motor initial use.							
P1.32	UVW phase sequence	Forward	0	0	*				
		Reverse	1						
P1.33	UVW encoder offset angle	0.0°~359.9°		0.00	*				
	•	synchronous motor using UVW encoder.							
	•	ined through synchronous motor complete /							
	portant to operation of synchron	ous motor. Users should tune them before s	ynchroi						
P1.34	Rotary transformer pole pairs	1~65535		1	*				
P1.35	UVW pole pairs	1~65535		4	*				
Rot set to it.		h pole pairs.When using the encoder, corre	ct para	meters m	ust be				
P1.36	PG dropped inspection time	0.0s:no action 0.1s~10.0s		0.0s	*				

It is used to set inspection time of encoder disconnection fault. When feedback signal is 0.0s, encoder disconnection fault will not be inspected.

If inverter detected disconnection fault, and the feedback value exceeded the P1.36 setup range. Inverter fault alarm No. 20= E.PG1.

		Without operation	0		
		Asynchronous static tuning	1		
P1.37	Tuning selection	Asynchronous complete tuning	2	0	*
		Synchronous static tuning	11		
		Synchronous complete tuning	12		

Caution:Correct motor ratings must be set before tuning

0: No operation, tuning is forbidden.

1: Asynchronous motor static tuning

It is used for occasions that asynchronous motor and the load are not easily torn off, which may lead to complete tuning invalid. Correct motor type and motor nameplate parameters P1.00~P1.05 must be set before static tuning. User could get P1.06~P1.08 through tuing.

Action description:Set P1.37 to 1 and then press RUN button, inverter will carry out asynchronous static tuning.

2: Asynchronous complete tuning

Asynchronous complete tuning can guarantee inverter dynamic control performance. Motor and the load should be disconnected to keep motor complete status.

In the process of asynchronous complete tuning , asynchronous complete tuning is taken first, and then accelerate to 80% of motor rated frequency according to P0.17. After keeping the state for a period of time, then decelerate to stop according to P0.18 and stop tuning.

Before asynchronous complete tuning , users should set motor type and motor nameplate parameters P1.00~P1.05 as well as encoder type and encoder pulse numbers P1.27, P1.28.

Inverter can get 5 motor parameters P1.06~P1.10 as well as AB phase sequence P1.30, vector control current loop PI parameter P2.13~P2.16 from tuning.

Action description:Set P1.37 to 2 and then press RUN button, inverter will carry out asynchronous complete tuning.

11: Synchronous static tuning

Synchronous static tuning must be choosen when synchronous motor and the load can not be separated. Motor doesn't work during the process. Before synchronous motor static load tuning , users should set accurate motor type and motor nameplate parameters P1.00~P1.05. Through synchronous static tuning , inverter can get synchronous motor initial angle, which is essential for synchronous motor normal operation. Synchronous motor must be tuned after installation and before the initial use.

12: Synchronous complete tuning

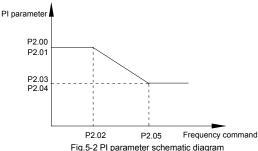
Synchronous motor complete tuning is recommended when motor and the load can be separated. It is better in running performance than synchronous motor static tuning.

In the process of complete tuning , complete tuning is taken first, and then accelerate to P0.08 according to P0.17. After keeping the state for a period of time, then decelerate to stop according to P0.18 and stop tuning. Caution:P0.08 must be set to non-zero value.

Before synchronous motor complete tuning , users should set motor type and motor nameplate parameters P1.00~P1.05 , encoder type and encoder pulse numbers P1.27, P1.28 and encoder pole pairs P1.34, P1.35.

Inverter can get motor parameters P1.16~P1.20 as well as encoder related information P1.30, P1.31, P1.32, P1.33 and vector control current loop PI parameters P2.13~P2.16 from synchronous noload tuning.

Action description:Set P1.37 to 11 and then press RUN button, inverter will carry out complete


tuning. Description:Tuning can only be carried out in the keyboard operation mode.

5-4 Vector control function group: P2.00-P2.22

P2 group function codes are valid for vector control and invalid for V/F control.

Code	Description/Display	Setting Range	Factory Setting	Change Limit
P2.00	Speed loop proportional gain 1	1~100	30	☆
P2.01	Speed loop integration time1	0.01s~10.00s	0.50s	☆
P2.02	Switching frequency1	0.00~P2.05	5.00Hz	☆
P2.03	Speed loop proportional gain 2	0~100	20	☆
P2.04	Speed loop integration time 2	0.01s~10.00s	1.00s	☆
P2.05	Switching frequency 2	P2.02~maximum frequency	10.00Hz	☆

Users could choose different speed loop PI parameters under different running frequency. When running frequency is less than the switching frequency(P2.02), adjusting parameters for speed loop PI are P2.00 and P2.01. When running frequency is greater than the switching frequency (P2.02), adjusting parameters for speed loop PI are P2.03 and P2.04. Speed loop PI parameters between switching frequency1 and switching frequency2 are two groups of linear switching. As shown in fig.5.2:

Users can adjust vector control speed dynamic response characteristics through setting proportional coefficient and integration time of the speed regulator.

Both increasing proportional gain and reducing integration time can accelerate the speed loop dynamic response. But excessive proportional gain or insufficient integration time may led to system oscillation.

Suggestions for regulating method:

If the factory parameters can not meet the requirements, users can fine-tuning it on the basis of factory value parameters. First increase the proportional gain to restrain system oscillation, then reduce integration time so that system has fast response characteristic and smaller overshoot.

Notice:Improper PI parameter setting may lead to excessive speed overshoot , even voltage fault during overshoot drop.

P2.06	Vector control slip gain	50%~200%	150%	☆		
This second to be added a start and a second second for second second second second second second second second						

This parameter is used to adjust motor steady speed precision for zero-speed sensor vector control mode. Please turn up the parameter value when with load motor running in low speed. On the contrary, when the with load motor running in high speed, please turn down the parameter value.

This parameter is also used to adjust the output current value with the same load for speed sensor vector control.

Section V. Parameter Function Table

P2.07 Speed-loop filter time 0.000s~0.100s 0.000s ¹ / ₂	ime 0.000s~0.100s 0.000s	2.07 Speed-loop filter time
---	--------------------------	-----------------------------

In vector control mode, speed-loop regulator outputs torque current command. P2.07 is used to filter the torque command.

Generally speaking, the parameter needs not to be modified. Users could properly increase the filtering time when speed fluctuation is relatively big, and decrease the value when motor oscillation occurs. If filtering time is small, inverter output torque might fluctuate greatly, but response speed will be fast.

P2.08	Vector control over-excitation gain	0~200	64	☆
-------	-------------------------------------	-------	----	---

In the process of inverter deceleration, over-excitation control can restrain the rising of bus voltage to avoid over-voltage fault. The larger the over-excitation gain, the stronger the suppression effect.

In applications where over-voltage alarming easily occurs during deceleration process, users should increase over-excitation gain. Excessive over-excitation gain may lead to output current increasing, users should balance it during application.

It is recommended that over-excitation gain is set to 0 in applications where inertia is small, motor decelerates without voltage rising. For applications with braking resistor, 0 is also recommended for over-excitation gain.

		P2.10	0		
		Al1	1		
		Al2	2		
P2.09	Torque upper limit source in	Al3(Potentiometer)	3	- 0	☆
speed	speed control mode	PULSE setup	4		~
		Communication setup	5		
		Min(Al1,Al2)	6		
		Max(AI1,AI2)	7		
P2.10	Torque upper limit digital setup in speed control mode	0.0%~200.0%		150.0%	☆

In speed control mode, inverter maximum torque output is controlled by torque upper limit. Range for 1-7 selections of P2.09 are corresponding to the setting range of P2.10.

P2.09 is used to select torque upper limit source. When P2.09 is set through analog, PULSE setup, communication setup, which 100% corresponding to P2.10. 100% of P2.10 is the rated torque of the inverter.

P2.13	Excitation regulation proportional gain	0~60000	2000	\$
P2.14	Excitation regulation integration gain	0~60000	1300	\$
P2.15	Torque regulation proportional gain	0~60000	2000	\$
P2.16	Torque requlation integration gain	0~60000	1300	\$

Vector control current-loop PI regulation, which is automatically obtained after asynchronous motor complete tuning or synchronous motor complete tuning. It generally needs not to be modified.

Caution: Integration regulator of current loop directly set integration gain without taking integration time as the dimension. Excessive current loop PI gain may lead oscillation to the entire control loop circuit.

If current oscillation or torque fluctuation is relatively big, users could manually turn down the PI proportional gain or integration gain.						
Sp	P2.17 Speed loop integration attribute		Invalid	0	0	
P2.17		1bit	Valid	1		☆
		No w	eak magnatic	0		
P2.18	Synchronous motor field weakening mode	Direc	t calculation mode	1	1	☆
	weakening mode	Auto	regulation mode	2		
P2.19	Synchronous motor field weakening depth	50%~500%			100%	☆
P2.20	Maximum field weakening current	1%~3	1%~300%		50%	☆
P2.21	Field weakening auto regulation gain	10%~500%		100%	☆	
P2.22	Field weakening integration multiples	2~10			2	☆

This group of parameters are used to set synchronus motor field weakening control.

When P2.18 is set to 0, synchronous motor doesn's carry out field weakening control. Maximum value of the revolving speed is relating to inverter's bus voltage. When motor maximum revolving speed cannot meet the requirements, synchronous motor field weakening function should be turned on to weaken field and improve speed.

FIE1 offers two kinds of field weakening method:direct calculation mode & auto regulation mode.

In the direct calculatin mode, field weakening current is calculated through target revolving speed, or manually adjust the current value through P2.19. The smaller the field weakening current is ,the smaller the total output current.

In auto regulation mode, the optimum field weakening current is automatically selected. But it may influence the system dynamic performance or stability.

Regulation speed of field weakening current can be changed through P2.21 and P2.22, but excessive regulation speed may lead to instability. Generally manual modification is not needed.

5-5 V/F control group: P3.00-P3.15

This function group is only valid for V/F control mode.

V/F control is suitable for general loads such as fan, pump. It is also appropriate for situations where one inverter driving multiple motors or there is big difference between inverter power and motor power.

Code	Description/Display	Setting Range		Factory Setting	Change Limit
P3.00 V/F curve setup	Linear V/F	0			
	Multi-point V/F	1			
		Square V/F	2	- 0	
	V/F curve setup	Power of 1.2 V/F	3		*
		Power of 1.4 V/F	4		
		Power of 1.6 V/F	6		

Section V. Parameter Function Table

Power of 1.8 V/F	8	
Reserved	9	
VF complete separation mode	10	
VF semi separation mode	11	

This parameter defines the V/F setup mode so as to meet the requirements of various load characteristics. 0: Linear V/F

It is suitable for the ordinary constant torque load.

1: Multi-point V/F

It is suitable for special loads such as dehydrator and centrifugal machine. It can be self-defined. Refer to the description of functional codes of Group F1-07 to F1-12 for details.

2: Square V/F

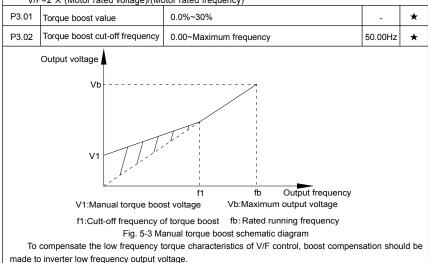
It is suitable for centrifugal loads such as fan and pump.

3~8: These are relation curve situated between linear V/F curve and square V/F curve.

9: Reserved

10: VF complete separation mode

Inverter output frequency and output voltage are mutually independent. Output frequency is decided by frequency source, while output voltage is decided by P3.13 (VF separation voltage source).


VF complete separation mode is generally applied in induction heating, inverter power supply, torque motor control fields etc.

11: VF semi separation mode

In this case, V is proportional to F. Proportional relationship can be set by the voltage source P3.13. The relationship between V&F is connected with P1 group(motor rated voltage and rated frequency).

Suppose that voltage source input is X (X from 0~100%), the V,F relationship is:

V/F=2*X*(Motor rated voltage)/(Motor rated frequency)

Torque hoist: it will be set according to the percentage of input rated voltage to the inverter. Below are explanations of setting torque increase:

1) When the torque hoist is set as 0.0%, the inverter will adopt auto torque hoist.

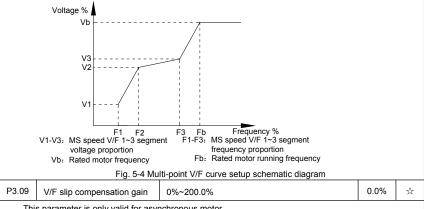
2) This parameter can be properly hoisted for small motor, while for large motor; the parameter can be

properly decreased.

3) If the torque hoist is set to be too large, the motor may be overheated, and the inverter may be over-current.

Torque hoist cut-off frequency: As shown in Fig. 5.3, the torque hoist is valid when the cutoff frequency below this setting. Otherwise, the torque hoist will be invalid.

P3.03	Multi-point V/F frequency point F1	0.00Hz~P3.05	0.00Hz	*
P3.04	Multi-point V/F voltage point V1	0.0%~100.0%	0.0%	*
P3.05	Multi-point V/F frequency point F2	P3.03~P3.07	0.00Hz	*
P3.06	Multi-point V/F voltage point V2	0.0%~100.0%	0.0%	*
P3.07	Multi-point V/F frequency point F3	P3.05~Motor rated frequency(P1.04)Note:Motor 2\3\4 rated frequency respectively A2.04\A3.04\A4.04	0.00Hz	*
P3.08	Multi-point V/F voltage point V3	0.0%~100.0%	0.0%	*


Six parameters of P3.03 to P3.08 define the multi-point V/F curve.

The setup value of multi-point V/F curve is generally set in accordance with the load characteristics of the motor.

Caution:

1) It must be set as follows: V1<V2<V3,F1<F2<F3. Fig5.4 is schematic diagram for multi-point V/F curve.

2) If the voltage is set too high at the time of low frequency, it may cause overheating and even burning of the motor as well as stall over current or over current protection of the inverter.

This parameter is only valid for asynchronous motor.

VF slip compensation can compensate asynchronous motor speed deviation in this way, motor rotary speed could be maintained in basically stable state during load change. In general, 100% corresponds to the rated slip of the motor with rated load. For motor rated slip, it can be get through auto calculation of P1 motor rated frequency and rated revolving speed.

The slip compensation gain adjustment may be performed referring to the following principle: When

	~					
		ensation coefficient is set to 100%, the rotar	y spee	d of the m	otor is	
close to	the reference speed.					
P3.10	VF over-excitation gain	0~200		64	☆	
decelera voltage effect is In t gain. Ex balance In t applicati P3.11	The role of over excitation gain function is to suppress the rise of bus voltage during the inverterdeceleration process, thus avoiding occurrence of over voltage fault due to bus voltage exceeding overvoltage protection limitation value. The higher the over excitation gain is, more powerfully the suppressioneffect is. The setting is described as follows:In the applications where over-voltage alarm easily occurs, it needs to improve the over-excitationgain. Excessive over-excitation gain easily lead to increasing of output current .Users should keep thebalance during operation.In the applications where the inertia is very low, the over excitation gain is set to 0, while in theapplications where there is brake resistor ,the over excitation gain is set to 0 as well.P3.11VF oscillation suppression gain0~100- $\frac{1}{x}$					
oscillatio oscillatio The effective	When the motor has no oscillation, please select this gain to 0. Only when the motor has obvious oscillation and does not run normally can the gain be properly increased. The bigger the gain is, the better oscillation suppression result will be. The gain shall be set as small as possible under the condition that the oscillation is suppressed effectively so as to avoid high influences on the V/F operation. Accurate motor rated current and no-load current parameters are required during using oscillation					
		Digital setup(P3.14)	0			
		Al1	1			
		Al2	2			
		Al3(Potentiometer)	3			
		PULSE pulse setup(DI5)	4	0	☆	
P3.13	VF separation voltage source	MS command	5			
		Simple PLC	6			
		PID	7			
		Communication setup	8			
		100% corresponding to the rated motor vol A5.02)	ltage (F	1.02, A4.0)2, A5.0	
P3.14	VF separation voltage digital setup	0V~rated motor voltage		0V	☆	
VF	VF separation is generally applied to induction heating control, inverter power supply control and					

In VF separation control mode, output voltage can be set through function code P3.14, analog value, MS command , PLC, PID or communication setup.

When P3.13 is nonnumeric setup, each 100% of the setting corresponds to rated moter voltage. When output setting percentage is negative, it's absolute value is the valid setting value.

0: Digital setup (P3.14)

torque motor control etc.

Voltage is directly set through P3.14.

1: AI1

2: AI2				
3: AI3(Potentiometer)				
Voltage is set through analog input terminal.				
4: PULSE pulse setup(DI5) voltage set	through terminal pulse.			
Pulse setup signal specification:voltage range 9V~30V, frequency range 0kHz~100kHz.				
5: MS command voltage source is MS command.				
Corresponding relationship between set signal and set voltage is determined through				
P4 group and PC group.				
6: Simple PLC				
When voltage source is simple PL	C, output voltage is set through PC group parameter	ers.		
7: PID				
Output voltage through PID closed	l loop.For specifications please refer to PA group f	or PID de	etailed	
description.				
8: Communication setup				
Communication setup refers to vol	tage that set by position machine through commun	ication m	ode.	
When the above voltage source s	election is 1~8, 0~100% corresponds to output vo	Itage 0V~	motor	
rated voltage.				
P3.15 VF separation voltage rise time	0.0s~1000.0s	0.0s	\$	
P3.15 refers to the time that need shown in fig.5-5.	ded for output voltage varying from 0V to motor ra	ated volta	ige.As	
Output voltage V				
Rated motor voltage –				
	t			
Actual voltage rise time	Actual voltage fall tir	ne		
	'Setting voltage fall ti			
Setting voltage rise time	5-5 VF separation schematic diagram	ile ile		
5-6 Input terminal: P4.00-P				
	tifunctional digital input terminals (DI1 to DI5			
• • •	input terminal, and FIE1 series inverter also			
•	ore input/output terminal, it can be equipped	bed with	multi	
function input/output expansion card	••••			
Multi-function input/output ex	pansion card has 4 multi-function digit	input to	ermina	

Multi-function input/output expansion card has 4 multi-function digit input terminal (DI7~DI10).

Code	Description/Display	Setting Range	Factory Setting	Change Limit
P4.00	DI1 terminal function selection	0~59	1	*
P4.01	DI2 terminal function selection	0~59	4	*

Section V. Parameter Function Table

P4.02	DI3 terminal function selection	0~59	9	*
P4.03	DI4 terminal function selection	0~59	12	*
P4.04	DI5 terminal function selection	0~59	13	*
P4.05	DI6 terminal function selection	0~59	2	*
P4.06	DI7 terminal function selection	0~59	12	*
P4.07	DI8 terminal function selection	0~59	13	*
P4.08	DI9 terminal function selection	0~59	14	*
P4.09	DI10 terminal function selection	0~59	15	*

These parameters are used to set digital multi-function input terminals, as shown in the table below:

Setting	Function	Specification explanation	
0	No- function	Set useless terminals to "no function", in order to preve misoperation.	
1	Forward command (FWD)	The forward jog and reverse jog of the inverter are	
2	Reverse command (REV)	controlled via the external terminals.	
3	Three line running control	Set inverter running mode as three line control mode.For details please refer to function code P4.11 (Terminal command mode).	
4	FWD JOG command (FJOG)	FJOG refers to jog forward running, RJOG refers to jog	
5	REV JOG command (RJOG)	reverse running. For jog running frequency, jog acc./dec. time please refer to P8.00, P8.01, P8.02 for details.	
6	Up command	When command source is set as "Digital Setup", the	
7	Down command	increase or decrease of the set frequency is implemented through the external terminal.	
8	Free stop	When this terminal command is valid, meaning that the inverter locks the output, the load will free stop according to the mechanical inertia.	
9	Fault reset(RESET)	When this terminal command is valid, inverter's fault can be reset. It has the same function with RESET key on the keyboard. This function can realize remote fault reset.	
10	Operation suspended	Inverter decelerates to stop, but all operation parameters are memorized. E.g:PLC parameter, swing frequency parameter, PID parameter. When this terminal signal disappeared, inverter restored to running status as before.	
11	External default normally open input	When the inverter detects that the signal occurs , it w	
12	Multi-stage speed terminal1		
13	Multi-stage speed terminal2	The setting of 16-segment speeds can be realized by the	
14	Multi-stage speed terminal3	combinations of the terminal status when the frequency source is "MS Speed". Refer to schedule 1 for details.	
15	Multi-stage speed terminal4		

16	Acc./dec.time selection terminal 1	It can realize 4 kinds of acc./dec. selection mode by 4
17	Acc./dec.time selection terminal 2	combination status of this 2 terminals.For details please refer to schedule2.
18	Frequency source switching	It is used to switch to choose different frequency sources. It realizes switching between 2 kinds of frequency sources according to the setup of P0.07.
19	UP/DOWN setup reset (terminal and keyboard)	When the frequency source is given as "Digital Setup" and the terminal command is valid, it can clear the frequency values changed through keyboard or terminals UP/DOWN and restore the reference frequency to the setup value of "Preset Frequency" (P0.08).
20	Running command switching terminal	When command source is set to terminal control (P0.02=1), the terminal could realize switching between terminal control and keyboard control. When command source is set to communication control(P0.02=2), the terminal could realize switching between communication control and keyboard control.
21	Acc./dec forbidden	When this terminal command is valid, it can maintain the current frequency output while stopping.
22	PID pause	PID temporary invalid, the inverter maintains the current frequency output and no longer taking PID adjustment of frequency source.
23	PLC status reset	When this terminal command is valid, it clears the memorized PLC running phase and running time, and restores to the initial status of PLC running.
24	Swing frequency pause	When this terminal command is valid, the inverter maintains the frequency output of the swing frequency center, and the swing frequency pauses.
25	Counter input	It is used as input terminal of the counting pulse.
26	Counter reset	When this terminal command is valid, it clears the counting value of the counter to zero.
27	Length counting input	It is used as pulse input terminal of the length counting.
28	Length counting reset	When this terminal is valid, it clears the length counting to zero.
29	Torque control forbidden	It prohibits inverter torque control. Inverter enters in speed control mode.
30	PULSE frequency input (Only valid for DI5)	DI5 is used as pulse input terminal.
31	Reserved	Reserved
32	Immediate DC braking	When this terminal is valid, inverter directly switch to dc braking state.
33	External default normally closed input	When the inverter detects that the signal occurs , it will report "15= E.EIOF" fault, and stop running.
34	Frequency modification enable	If the function is valid, inverter does not respond to frequency change until the function turns to be invalid.
35	PID direction reversed	PID and PA.03 set values are set in oppoisite directions when the terminal is valid.

Section V. Parameter Function Table

36	External stop terminal1	It could make inverter stop when in keyboard contro Equivalent to function of STOP key on the keyboard.
37	Control command switching terminal 2	It is used to switch control mode between terminal an communication.
38	PID integration suspension	When it is valid, PID integration regulation function pause while PID proportional regulation and differential regulation function are still valid.
39	Frequency source X and preset frequency switching	When it is valid, frequency source X is replaced by the preset frequency P0.08.
40	Frequency source Y and preset frequency switching	When it is valid, frequency source Y is replaced by th preset frequency P0.08.
41	Motor selection terminal1	It can realize 4 groups of motor parameters switching by
42	Motor selection terminal2	combination status of this 2 terminals.For details pleas refer to schedule3.
43	PID parameter switching	PA.18=1, the parameter is invalid, PID parameter takes use of PA.05~PA.07. On the contrary, PA.15~PA.17 are taken for the use.
44	User-defined fault 1	When user-defined fault 1&2 are valid, inverter alarm fault
45	User-defined fault 2	number 27= E.USt1 & 28= E.USt2 respectively. Inverter w handle the fault according to the mode selected by P9.49.
46	Speed control/ torque control switching	It enables control mode to switch between inverter torqu control and speed control. Inverter running in the A0.0 defined mode when the terminal is invalid, and will switc to another mode when it is valid.
47	Emergency stop	Inverter stops at the fastest speed when the terminal valid. Current is set to the current upper limit during th stop process. This function is used for inverter fast stop which can meet the stop need in system emergency.
48	External stop terminal 2	This terminal can be used to stop the inverter in any circumstances (panel control ,terminal control and communication control). Deceleration time is fixed to deceleration time 4.
49	Deceleration DC braking	If it is valid, inverter first decelerates to stop DC brakin start frequency and then switches to DC braking state.
50	Running time reset	Inverter running time of this time is cleared if the terminal valid. It operates with the use of P8.42 and P8.53.
51-59	Reserved	Reserved

Schedule 1 MS command function description

4 MS command terminals, which can be combined into 16 states. For 16 corresponding values, please refer to schedule 1 as below:

K4	КЗ	K2	K1	Command setup	Corresponding parameter
OFF	OFF	OFF	OFF	MS command 0	PC.00
OFF	OFF	OFF	ON	MS command 1	PC.01
OFF	OFF	ON	OFF	MS command 2	PC.02
OFF	OFF	ON	ON	MS command 3	PC.03
OFF	ON	OFF	OFF	MS command 4	PC.04

OFF	ON	OFF	ON	MS command 5	PC.05	
OFF	ON	ON	OFF	MS command 6	PC.06	
OFF	ON	ON	ON	MS command 7	PC.07	
ON	OFF	OFF	OFF	MS command 8	PC.08	
ON	OFF	OFF	ON	MS command 9	PC.09	
ON	OFF	ON	OFF	MS command 10	PC.10	
ON	OFF	ON	ON	MS command 11	PC.11	
ON	ON	OFF	OFF	MS command 12	PC.12	
ON	ON	OFF	ON	MS command 13	PC.13	
ON	ON	ON	OFF	MS command 14	PC.14	
ON	ON	ON	ON	MS command 15	PC.15	

When frequency source is set to multi-stage speed mode, 100.0% of function code PC.00~PC.15 are corresponding to maximum frequency P0.10. To meet the need, MS command can be used not only for multi-stage speed function, but also PID setup source or VF separation voltage source.

S	Schedule 2 Acceleration / deceleration terminal selection description:							
Terminal2 Terminal1 Ac			Acc./dec. selection	Corresponding parameter				
	OFF	OFF	Acc./dec. time 1	P0.17, P0.18				
	OFF	ON	Acc./dec. time 2	P8.03, P8.04				
ON OFF Ad		Acc./dec. time 3	P8.05, P8.06					
ON ON Acc./dec. time 4 P8.07, P8.08								
S	chedule 3	Motor termin	al selection description:					
	Tamainalo	Tamainald		Corresponding				
	Terminal2	Terminal1	Acc./dec. selection	parameter				
	OFF	OFF	Motor 1	P1, P2 group				
	OFF	ON	Motor 2	A2 group				
ON OFF Motor 3 A3 group								
ON ON Motor 4 A4 group								
P4.10 DI filter time 0.000s~1.000s 0.010s ☆								
If the digital input terminal malfunction because it is vulnerable to interference, users could increase								
	the parameter value to enhance the interference immunity. However, this operation may cause reduced							
sensi	tivity of the D	I terminal.						

Schedule 2 Acceleration / deceleration terminal selection description:

-	ne digital input terminal malfunction			,		
the para	ameter value to enhance the interfe	erence immunity.	However, this opera	ition may	cause ree	duced
sensitivi	ty of the DI terminal.					
	Тм	vo-line mode 1		0		

P4.11 Terminal command mode Two-line mode 2 1 Three-line mode 1 2			I wo-line mode 1	0		1
Three-line mode 1 2	P4.11	Terminal command mode	Two-line mode 2	1	0	*
Three line mode 2 3			Three-line mode 1	2		
			Three-line mode 2	3		

This parameter defines four different modes of controlling the forward and reverse rotations of the inverter via the external terminal.

0: Two-line mode 1:

This mode is the most commanly used forward/reverse rotation control mode. The forward/reverse rotation of the motor is decided by the Dix, Dly terminal commands. The descriptions on the terminal running command are as shown as below:

Terminal	Set value	Description
Dlx	1	Forward(FWD)
Dly	2	Reverse(REV)

Among them ,DIx, DIy are DI1~DI10 muti-fuction input terminal, level valid.

	₩2	DIANERAND
1	1	Stop
1	0	Reverse(REV)
0	1	Forward(FWD)
0	0	Stop
K1	K2	Command

Fig. 5-6 Two-line control mode 1

1: Two-line mode 2:

In this operation mode,DIx terminal function is to enable operation,while DIy terminal function is to determine running direction. The descriptions on the terminal running command are as shown as below:

Terminal	Set value	Description
Dlx	1	Forward(FWD)
Dly	2	Reverse(REV)

Among them ,DIx, DIy are DI1~DI10 multi-fuction input terminal, level valid

	₩2	DQN(Byeng)
1	1	Reverse(REV)
1	0	Forward(FWD)
0	1 Stop	
0	0 Stop	
K1	K2	Command

Fig. 5-7 Two-line control mode 2

2: Three-line mode1

In this operation mode, DIn terminal is the enable terminal, running direction controlled by DIx, DIy respectively. The descriptions on the terminal running command are as shown as below:

Terminal Set value		Description
Dix	1	Forward(FWD)
Dly	2	Reverse(REV)
Dln 3		Three-line running control

SB3

When in the need of running, users should first connect DIn terminal. Forward and reverse running is realized through the rising edge of Dix or Dly.

When in the need of stop, user should disconnect DIn terminal to meet the need. Among them, DIx, DIy, DIn are multi-function input terminal of DI1~DI10. DIx,DIy are of pulse valid, while DIn level valid.

DIDM (RIEVE) (Dunning control

Fig. 5-8 Three-line control mode 1

Among them:

SB1:Stop button

SB2:Forward rotation button

SB3:Reverse rotation button

3: Three-line mode2

In this operation mode, DIn terminal is the enable terminal, DIx terminal function is to enable operation, while DIy terminal function is to determine running direction. The descriptions on the terminal running command are as shown as below:

Terminal	Set value	Description
Dlx	1	Forward(FWD)
Dly	2	Reverse(REV)
Dln	3	Three-line running control

When in the need of running, users should first connect DIn terminal. DIx pulse rising edge gives running command signal, while DIy status gives running direction signal.

When in the need of stop, user should disconnect DIn terminal to meet the need. Among them, DIx , DIy, DIn are multi-function input terminals of DI1~DI10. DIx is of pulse valid, while DIy, DIn is of level valid.

к	Description
0	Forward(FWD)
1	Reverse(REV)

SB2

DIGNER MARKEN MINING control

Fig. 5-9 Three-line control mode 2

Among them :

SB1:Stop button

SB2:Running button

P4.12 Terminal UP/DOWN variation 0.01Hz/s~65.535Hz/s 1.00Hz/s	☆	
---	---	--

It is used to set the frequency variation rate (frequency variation per second) when adjusting the set frequency with terminals UP/DOWN.

When P0.22 (frequency decimal point) is set to 2, range of P4.12 value is 0.001Hz/s~65.535Hz/s. When P0.22 (frequency decimal point) is set to 1, range of P4.12 value is 0.01Hz/s~655.35Hz/s.

P4.13	Al curve 1 minimum input	0.00V~P4.15	0.00V	☆
P4.14	Al curve 1 minimum input corresponding setup	100.00%~100.0%	0.0%	☆
P4.15	Al curve 1 maximum input	P4.13~10.00V	10.00V	☆
P4.16	Al curve 1 maximum input corresponding setup	100.00%~100.0%	100.0%	☆
P4.17	AI1 filter time	0.00s~10.00s	0.10s	☆

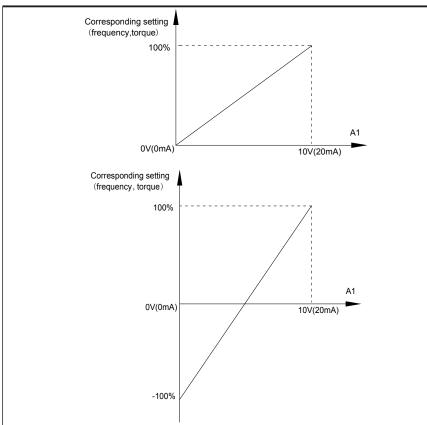


Fig. 5-10 Relationship between analog input and setup value

The parameters mentioned above define the relationship between analog input voltage and the analog input setup value.

When analog input voltage exceeds the setup "maximum input" limit, analog voltage is calculated as "maximum input" .Similarly, when analog input is smaller than the setup "minimum input", analog voltage is calculated as minimum input or 0.0% according to the setting of P4.34.

Al used as current input terminal :1mA current equals to 0.5V voltage.

Al input filtering time is used to set Al1 software filtering time. When field anlog quantity is vulnerable, please increase the filtering time so that anlog quantity tends to be stable. But excessive filtering time will lead to slow response time to anlog detection. User should balance it according to practical application cases.

In various application cases, the nominal value corresponding to 100% of analog reference will be different. Refer to specific application description for the specific value.

Figure 5.10 shows typical setup cases.

P4.18 AI curve 2 minimum input 0.00V~P4.20 0.00V x	P4.18	Al curve 2 minimum input	0.00V~P4.20	0.00V	☆
--	-------	--------------------------	-------------	-------	---

P4.19	Al curve 2 minimum input corresponding setup	-100.00%~100.0%	0.0%	☆		
P4.20	Al curve 2 maximum input	P4.18~10.00V 1		☆		
P4.21	Al curve 2 maximum input corresponding setup	-100.00%~100.0%	100.0%	☆		
P4.22	AI2 filter time	0.00s~10.00s	0.10s	☆		
For	function and usage of curve 2,	blease refer to description of curve 1.				
P4.23	Al curve 3 minimum input	0.00s~P4.25	0.10V	☆		
P4.24	Al curve 3 minimum input corresponding setup	-100.00%~100.0%	0.0%	☆		
P4.25	AI curve3 maximum input	P4.23~10.00V	4.00V	☆		
P4.26	Al curve 3 maximum input corresponding setup	-100.00%~100.0%	100.0%	☆		
P4.27	AI3 filter time	0.00s~10.00s		☆		
For	function and usage of curve 3,	blease refer to description of curve 1.				
P4.28	PULSE minimum input	0.00kHz~P4.30	0.00kHz	☆		
P4.29	PULSE minimum input corresponding setup	-100.00%~100.0%	0.0%	☆		
P4.30	PULSE maximum input	P4.28~50.00kHz	50.00kHz	☆		
P4.31	PULSE maximum input corresponding setup -100.00%~100.0%		100.0%	☆		
P4.32	PULSE filter time	0.00s~10.00s	0.10s	☆		
This group of parameters are used to set relationship between DI5 pulse frequency and it's						

corresponding settings.

Pulse frequency can be only input to the inverter through DI5 channel. This function group's applications are similar to curve 1, please refer to the description of curve 1.

		1bit	Al1 curve selection			
	Al curve selection	Curve1(2 points,see P4.13~P4.16)		1		
		Curve2(2 points,see P4.18~P4.21)		2		
		Curve3(2 points,see P4.23~P4.26)		3		
D4 00		Curve4(4 points,see A5.00~A5.07)		4	321	
P4.33		Curve5(4 points,see A5.08~A5.15)		5		☆
		10bit	AI2 curve selection			
		Curve	e1(2 points,see P4.13~P4.16)	1		
		Curve2(2 points,see P4.18~P4.21)		2		
		Curve	e3(2 points,see P4.23~P4.26)	3		

Section V. Parameter Function Table

	Curve4(4 points,see A5.00~A5.07)	4			
	Curve5(4 points,see A5.08~A5.15)				
	100bit AI3 curve selection				
	Curve1(2 points,see P4.13~P4.16) Curve2(2 points,see P4.18~P4.21)				
	Curve3(2 points,see P4.23~P4.26)	3			
	Curve4(4 points,see A5.00~A5.07)				
	Curve5(4 points,see A5.08~A5.15)	5			

The 1bit, 10bit, 10bit of the function code are used to choose the set curve of analog input AI1, AI2, AI3 respectively.

3 analog input can choose any curve of the 5 types.

Curve 1, curve 2, curve 3 are 2 points curve that set through P4 group function codes, while curve 4, curve 5 are 4 points curve that set through A8 group function codes.

FIE1 standard unit offers 3-channel analog input terminals. Multi-function I/O expansion card is needed in the use of Al3x.

		1bit	AI below minimum input setup sele	ction		
	Al below minimum input setup selection	Minimum input setup		0		
		0.0%		1		
		10bit	A2 below minimum input setup sele	ection]	
P4.34		Minimum input setup		0	000	☆
		0.0%)	1		
		100bit	A3 below minimum input set select	ion		
		Minimum input setup		0		
		0.0%	1	1		

This function code is used to dertermine analog quantity corresponding setup when analog input voltage below the setup of minimum input.

The 1bit, 10bit, 100bit of the function code are corresponding to the analog input Al1, Al2, Al3 respectively. If the bit is set to 0 and Al is below the minimum setup , the analog input setup is the curve "minimum input corresponding setup"(P4.14, P4.19, P4.24) . If the bit is set to 0 and Al is below the minimum setup , the analog quantity corresponding setup is 0.0%.

······································									
P4.35	DI1 delay time	0.0s~3600.0s			0.0s	*			
P4.36	DI2 delay time	0.0s~3600.0s			0.0s	*			
P4.37	DI3 delay time	0.0s~3600.0s			0.0s	*			
Only DI1, DI2, DI3 are able to set equipment delay time.									
They are used to set delay time to inverter DI terminal state change.									
P4.38	DI terminal effective mode selection 1	1bit	DI1 terminal valid state setup		00000				
		High level valid		0	00000	*			

		Low level valid	1		
		10bit DI2 terminal valid state setup			
		High level valid	0		
		Low level valid		1	
		100bit DI3 terminal valid state setup	I	-	
		High level valid	0		
		Low level valid	1		
		1000 bit DI4 terminal valid state setup			
		High level valid	0	-	
		Low level valid	1		
		1000 DI5 terminal valid state setup			
		High level valid	0	-	
		Low level valid	1		
	DI terminal effective mode selection 2	1bit DI6 terminal valid state setup			
		High level valid	0		
		Low level valid	1		
		10bit DI7 terminal valid state setup		_	
		High level valid 0			
		Low level valid	1		
		100bit DI8 terminal valid state setup			
P4.39		High level valid	0	00000	*
		Low level valid	1		
		1000 bit DI9 terminal valid state setup			
		High level valid	0		
		Low level valid	1		
		1000 DI10 terminal valid state setup			
		High level valid	0		
		Low level valid	1		
	used to set digital input termina				
		n COM and corresponding DI is valid, discon			
Low	r level valid:Connection betweel	n COM and corresponding DI is invalid, discor	nnectio	n valid.	

5-7 Output terminal: P5.00-P5.22

FIE1 series inverter provides two multifunctional terminal output selections ,one multifunctional relay output terminal ,one multifunctional digital output terminal and one FM terminal (can be used as high speed pulse output terminal as well as open collector switching output). If the above output terminals can not meet the field application, users should choose optional multi-function input/output expansion card.

Output terminals of multi-function input/output expansion card contain 1 multi-function analog output terminal (AO2), 1 multi-function relay output terminal (relay 2), 1 multi-function digital output terminal(DO2).

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limit
P5.00	FM terminal output mode	Pulse output(FMP)	0	0	\$
P5.00	selection	Switch output(FMR)	1	0	×
or open	FM is programmable multiplex terminal, which can be used as high speed pulse output terminal (FMP) or open collector switching output terminal (FMR). When P5.00 is set to 0, maximum output frequency can reach 10kHz, please refer to P5.06 for related description				
P5.01	FMR selection (open collector output terminal)	0-40		0	☆
P5.02	Relay output selection (TA1.TB1.TC1)	0-40		2	☆
P5.03	Expansion card relay output selection(TA2.TB2.TC2)	0-40		2	☆
P5.04	DO1 output selection(open collector output terminal)	0-40		1	☆
P5.05	Expansion card DO2 output selection	0-40		1	\$

The above 5 function codes are used to select 5 digital output function. TA1.TB1.TC1 and TA2.TB2.TC2 are control board and expansion card relay respectively.

Function selections a	are as follows:
-----------------------	-----------------

Set value	Function	Description
0	No output	The output terminals have no function
1	Inverter in operation	When the inverter is running, ON signal is output.
2	Output fault(Stop fault)	When inverter fault happens and stops due to the fault , ON signal is output
3	Frequency level detection FDT1 output	Refer to P8.19 and P8.20 function codes for details
4	Frequency arrival	Refer to P8.21 function codes for details
5	Null speed operation (stop without output)	When inverter is in running status and output 0Hz , ON signal is output. When inverter is in stop status, OFF signal is output.

6 Motor overload pre-alarm Judgment will be made according to the prealarm parameter value. ON signal will be output. Refer to P9.00 to P9.02 function codes for the descriptions of motor overload. 7 Inverter overload pre-alarm When it is found that the inverter is overloaded, ON signal will be output before the overload protection occurs. 8 Setup counting value arrived When it is found that the inverter is overloaded, ON signal will be output before the overload protection occurs. 9 Designated counting value arrived When the counting value reaches the value of PB.08, it outputs ON signal. 10 Length arrived When the actual length exceeds the setup value in PB.05, it outputs ON signal. 11 PLC circulation end When the actual length exceeds the setup value in PB.05, it outputs ON signal. 12 Total running time arrived When the accumulated running time of the inverter exceeds the setup time (P8.17), it outputs ON signal. 13 Frequency limit When the inverter is ready for running, time or uput frequency, it outputs ON signal. 14 Torque limit In speed control mode, if output to N signal. 15 RUN ready When the voltage value of analog input Al1 is bigger than that of analog input Al2, it output SO signal. 17 Frequency lower limit arrived (sto minong frequency of the inverter reaches the frequency			
7 Inverter overload pre-alarm signal will be output before the overload protection occurs. 8 Setup counting value arrived When the counting value reaches the value of PB.08, it outputs ON signal. 9 Designated counting value arrived When the counting value reaches the value of PB.09, it outputs ON signal. Refers to PB group for details. 10 Length arrived When the actual length exceeds the setup value in PB.05, it outputs ON signal. 11 PLC circulation end When the simple PLC running finishes one circulation, it outputs a pulse signal with width of 250ms. 12 Total running time arrived When the accumulated running time of the inverter exceeds upper limit frequency or lower limit frequency, it outputs ON signal. 14 Torque limit In speed control mode, if output torgue reaches the output. ON signal. 15 RUN ready When the inverter has no fault and the bus voltage works normally and the inverter is ready for running, it output ON signal. 16 Al1>Al2 When the running frequency of the inverter reaches the frequency lower limit, and output ON signal. 17 Frequency lower limit arrived (stop without output) When the running frequency of the inverter reaches the frequency lower limi	6	Motor overload pre-alarm	parameter value before the motor electronic thermal protection is enabled. If it exceeds the pre-alarm parameter value, ON signal will be output. Refer to P9.00 to P9.02 function codes for the descriptions of
8 Setup counting value arrived outputs ON signal. 9 Designated counting value arrived When the counting value reaches the value of PB.09, it outputs ON signal.Refers to PB group for details. 10 Length arrived When the actual length exceeds the setup value in PB.05, it outputs ON signal. 11 PLC circulation end When the simple PLC running finishes one circulation, it outputs ON signal. 12 Total running time arrived When the accumulated running time of the inverter exceeds the setup ime (PB.17), it outputs ON signal. 13 Frequency limit When the simple PLC running finishes one circulation, it outputs ON signal. 14 Torque limit When the accumulated running time of the inverter exceeds the setup ime (PB.17), it outputs ON signal. 14 Torque limit In speed control mode, if output torque reaches the torque limit, inverter will be in stall protection status and output ON signal. 15 RUN ready When the running frequency of the inverter reaches the frequency uper limit arrived 16 Al1>Al2 When the running frequency of the inverter reaches the frequency uper limit, it outputs ON signal. 18 Frequency lower limit arrived (stop without output) When the running frequency of the inverter reaches the frequency uper limit, it outputs ON signal. And output OFF signal in stop status. 19 Undervoltage	7	Inverter overload pre-alarm	signal will be output before the overload protection
9 Designated counting value arrived outputs ON signal.Refers to PB group for details. 10 Length arrived When the actual length exceeds the setup value in PB.05, it outputs ON signal. 11 PLC circulation end When the simple PLC running finishes one circulation, it outputs a pulse signal with width of 250ms. 12 Total running time arrived When the accumulated running time of the inverter exceeds the setup time (PS.17), it outputs ON signal. 13 Frequency limit When set frequency exceeds upper limit frequency or lower limit frequency or lower limit frequency or lower limit frequency or lower limit frequency or upper limit frequency or lower limit frequency, exceeds upper limit frequency or lower limit frequency, it output ON signal. 14 Torque limit In speed control mode, if output torque reaches the torque limit, inverter will be in stall protection status and output ON signal. 15 RUN ready When the inverter has no fault and the bus voltage works normally and the inverter is ready for running, it outputs ON signal. Upon normal startup, it closes the output. 16 Al1>Al2 When the running frequency of the inverter reaches the frequency lower limit arrived (stop without output) When the running frequency of the inverter reaches the frequency lower limit, it outputs ON signal. And output OFF signal in stop status. 19 Undervoltage state output When inverter to communication protocol. <td< td=""><td>8</td><td>Setup counting value arrived</td><td></td></td<>	8	Setup counting value arrived	
10 Length arrived PB.05, it outputs ON signal. 11 PLC circulation end When the simple PLC running finishes one circulation, it outputs a pulse signal with width of 250ms. 12 Total running time arrived When the accumulated running time of the inverter exceeds the setup time (P8.17), it outputs ON signal. 13 Frequency limit When set frequency exceeds upper limit frequency or lower limit frequency, and inverter output frequency, it outputs ON signal. 14 Torque limit In speed control mode, if output torque reaches the torque limit, inverter will be in stall protection status and output ON signal. 15 RUN ready When the running frequency of the inverter is ready for running, it output. 16 Al1>Al2 When the voltage value of analog input Al1 is bigger than that of analog input Al2, it output ON signal. 17 Frequency lower limit arrived (stop without output) When the running frequency of the inverter reaches the frequency upper limit, it outputs ON signal. 18 Frequency lower limit arrived (stop without output) When inverter is in undervoltage status, it outpus ON signal. 19 Undervoltage state output When inverter is in undervoltage status, it outpus ON signal. 20 Communication setup Please refer to communication protocol. 21 Reserved Reserved	9	Designated counting value arrived	
11 PLC circulation end outputs a pulse signal with width of 250ms. 12 Total running time arrived When the accumulated running time of the inverter exceeds the setup time (P8.17), it outputs ON signal. 13 Frequency limit When set frequency exceeds upper limit frequency or lower limit frequency it outputs ON signal. 14 Torque limit In speed control mode, if output torque reaches the torque limit, inverter will be in stall protection status and output ON signal. 15 RUN ready When the voltage value of analog input Al1 is bigger than that of analog input Al2, it outputs ON signal. 16 Al1>Al2 When the running frequency of the inverter reaches the frequency upper limit arrived (stop without output) 18 Frequency lower limit arrived (stop without output) When the running frequency of the inverter reaches the frequency upper limit arrived Reserved 19 Undervoltage state output When inverter is in undervoltage status, it outpus ON signal. 20 Communication setup Please refer to communication protocol. 21 Reserved Reserved 23 Null speed operation 2 (Stop without put) When inverter output OHz , ON signal is output. 24 Total power-on time arrival When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	10	Length arrived	When the actual length exceeds the setup value in
12 Total running time arrived exceeds the setup time (P8.17), it outputs ON signal. 13 Frequency limit When set frequency exceeds upper limit frequency or lower limit frequency, and inverter output frequency, it outputs ON signal. 14 Torque limit In speed control mode, if output torque reaches the torque limit, inverter will be in stall protection status and output ON signal. 15 RUN ready When the inverter has no fault and the bus voltage works normally and the inverter is ready for running, it output. 16 Al1>Al2 When the voltage value of analog input Al1 is bigger than that of analog input Al2, it output ON signal. 17 Frequency lower limit arrived (stop without output) When the running frequency of the inverter reaches the frequency upper limit, it outputs ON signal. 18 Frequency lower limit arrived (stop without output) When inverter is in undervoltage status, it output ON signal. 19 Undervoltage state output When inverter is in undervoltage status, it outpus ON signal. 20 Communication setup Please refer to communication protocol. 21 Reserved Reserved 22 Reserved Reserved 23 Null speed operation 2 (Stop with output) When inverter output 0Hz , ON signal is output. 24 Total power-on time arrival W	11	PLC circulation end	
13 Frequency limit lower limit frequency, and inverter output frequency exceeds upper limit frequency or lower limit frequency, it outputs ON signal. 14 Torque limit In speed control mode, if output torque reaches the torque limit, inverter will be in stall protection status and output ON signal. 15 RUN ready When the inverter has no fault and the bus voltage works normally and the inverter is ready for running, it outputs ON signal. Upon normal startup, it closes the output. 16 Al1>Al2 When the voltage value of analog input Al1 is bigger than that of analog input Al2, it output ON signal. 17 Frequency upper limit arrived (stop without output) When the running frequency of the inverter reaches the frequency lower limit, it outputs ON signal. 18 Frequency lower limit arrived (stop without output) When the running frequency of the inverter reaches the frequency lower limit, it outputs ON signal. And output OFF signal in stop status. 19 Undervoltage state output When inverter is in undervoltage status, it outpus ON signal. 21 Reserved Reserved 22 Reserved Reserved 23 Null speed operation 2 (Stop with output) When inverter output 0Hz , ON signal is output. 24 Total power-on time arrival When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	12	Total running time arrived	° °
14Torque limitIn speed control mode, if output torque reaches the torque limit, inverter will be in stall protection status and output ON signal.15RUN readyWhen the inverter has no fault and the bus voltage works normally and the inverter is ready for running, it outputs ON signal. Upon normal startup, it closes the output.16Al1>Al2When the voltage value of analog input Al1 is bigger than that of analog input Al2, it output ON signal.17Frequency upper limit arrived (stop without output)When the running frequency of the inverter reaches the frequency lower limit, it outputs ON signal.18Frequency lower limit arrived (stop without output)When the running frequency of the inverter reaches the frequency lower limit, it outputs ON signal. And output OFF signal in stop status.19Undervoltage state outputWhen inverter is in undervoltage status, it outpus ON signal.20Communication setupPlease refer to communication protocol.21Reserved with output)Reserved23Null speed operation 2 (Stop with output)When inverter output 0Hz , ON signal is output. When inverter is in stop status, ON signal is output. When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	13	Frequency limit	lower limit frequency, and inverter output frequency exceeds upper limit frequency or lower limit frequency,
15RUN readyworks normally and the inverter is ready for running, it outputs ON signal. Upon normal startup, it closes the output.16Al1>Al2When the voltage value of analog input Al1 is bigger than that of analog input Al2, it output ON signal.17Frequency upper limit arrived (stop without output)When the running frequency of the inverter reaches the frequency lower limit, it outputs ON signal.18Frequency lower limit arrived (stop without output)When the running frequency of the inverter reaches the frequency lower limit, it outputs ON signal. And output OFF signal in stop status.19Undervoltage state outputWhen inverter is in undervoltage status, it outpus ON signal.20Communication setupPlease refer to communication protocol.21ReservedReserved22ReservedReserved23Null speed operation 2 (Stop with output)When inverter output 0Hz , ON signal is output. When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	14	Torque limit	In speed control mode, if output torque reaches the torque limit, inverter will be in stall protection status and
16 Al1>Al2 When the voltage value of analog input Al1 is bigger than that of analog input Al2, it output ON signal. 17 Frequency upper limit arrived When the running frequency of the inverter reaches the frequency upper limit, it outputs ON signal. 18 Frequency lower limit arrived (stop without output) When the running frequency of the inverter reaches the frequency lower limit, it outputs ON signal. And output OFF signal in stop status. 19 Undervoltage state output When inverter is in undervoltage status, it outpus ON signal. 20 Communication setup Please refer to communication protocol. 21 Reserved Reserved 23 Null speed operation 2 (Stop with output) When inverter output 0Hz , ON signal is output. When inverter is in stop status, ON signal is output. 24 Total power-on time arrival When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	15	RUN ready	works normally and the inverter is ready for running, it outputs ON signal. Upon normal startup, it closes the
17 Frequency upper limit arrived frequency upper limit, it outputs ON signal. 18 Frequency lower limit arrived (stop without output) When the running frequency of the inverter reaches the frequency lower limit, it outputs ON signal. And output OFF signal in stop status. 19 Undervoltage state output When inverter is in undervoltage status, it outpus ON signal. 20 Communication setup Please refer to communication protocol. 21 Reserved Reserved 22 Reserved Reserved 23 Null speed operation 2 (Stop with output) When inverter is in stop status, ON signal is output. 24 Total power-on time arrival When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	16	AI1>AI2	When the voltage value of analog input Al1 is bigger
18 Frequency lower limit arrived (stop without output) frequency lower limit, it outputs ON signal. And output OFF signal in stop status. 19 Undervoltage state output When inverter is in undervoltage status, it outpus ON signal. 20 Communication setup Please refer to communication protocol. 21 Reserved Reserved 22 Reserved Reserved 23 Null speed operation 2 (Stop with output) When inverter output 0Hz , ON signal is output. When inverter is in stop status, ON signal is output. 24 Total power-on time arrival When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	17	Frequency upper limit arrived	
19 Undervoltage state output When inverter is in undervoltage status, it outpus ON signal. 20 Communication setup Please refer to communication protocol. 21 Reserved Reserved 22 Reserved Reserved 23 Null speed operation 2 (Stop with output) When inverter output 0Hz , ON signal is output. When inverter is in stop status, ON signal is output. 24 Total power-on time arrival When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	18		frequency lower limit, it outputs ON signal. And output
21 Reserved 22 Reserved 23 Null speed operation 2 (Stop with output) When inverter output 0Hz , ON signal is output. When inverter is in stop status, ON signal is output. 24 Total power-on time arrival When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	19	Undervoltage state output	When inverter is in undervoltage status, it outpus ON
22 Reserved Reserved 23 Null speed operation 2 (Stop with output) When inverter output 0Hz , ON signal is output. When inverter is in stop status, ON signal is output. 24 Total power-on time arrival When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	20	Communication setup	Please refer to communication protocol.
23 Null speed operation 2 (Stop with output) When inverter output 0Hz , ON signal is output. 24 Total power-on time arrival When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	21	Reserved	Reserved
23 with output) When inverter is in stop status, ON signal is output. 24 Total power-on time arrival When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.	22	Reserved	Reserved
24 Total power-on time arrival P8.16 set value, it outputs ON signal.	23		
25 Inspection level of FDT2 frequency Please refer to function code P8.28, P8.29 for details.	24	Total power-on time arrival	,
	25	Inspection level of FDT2 frequency	Please refer to function code P8.28, P8.29 for details.

26	Frequency 1 arrival output	Please refer to function code P8.30, P8.31 for details.		
27	Frequency 2 arrival output	Please refer to function code P8.32, P8.33 for details.		
28	Current 1 arrival output	Please refer to function code P8.38, P8.39 for details.		
29	Current 2 arrival output	Please refer to function code P8.40, P8.41 for details.		
30	Timing arrival output	When inverter running time reaches the set timming (P8.42 valid), it outputs ON signal.		
31	Al1 excessive input	When analog input value Al1 is bigger than P8.46 (Al1 input protection upper limit) or smaller than P8.45(Al1 input protection lower limit), it outpus ON signal.		
32	Load off	Inverter in load off status, it outpus ON signal.		
33	Reverse running	Inverter in reverse running mode, it outputs ON signal.		
34	Zero current state	Please refer to function code P8.28, P8.29 for details.		
35	Module temperature arrival	When module radiator temperature(P7.07) reaches the set value of P8.47, it outputs ON signal.		
36	Software excessive current	Please refer to function code P8.36, P8.37 for details.		
37	Frequency lower limit arrival (stop with output)	When running frequency reaches frequency lower limit, it outputs ON signal. When in stop status ,it outputs ON signal too.		
38	Alarm output	When inverter fault with processing mode of continue running, it outputs alarm signal.		
39	Motor over temperature alarm	When motor temperature reaches set value of P9.58, it outputs ON signal.(temperature can be viewed through U0.34)		
40	The running time arrival	When the running time exceeds the set value of P8.53 , it outputs ON signal.		

P5.06	FMP output function selection (pulse output terminal)	0-16	0	☆
P5.07	AO1 output function selection	0-16	0	☆
P5.08	AO2 output function selection	0-16	1	☆

FMP terminal output pulse frequency range:0.01kHz~P5.09(FMP maximum frequency output), P5.09 could vary from 0.01kHz to 100.00kHz.

AO1, AO2 output ranges from 0V to 10V, or 0mA to 20mA.

The corresponding value range is shown in the table below:

Setup value	Function	Range
0	Running frequency	0~maximum output frequency
1	Setup frequency	0~maximum output frequency
2	Outputcurrent	0~200% of the rated current of the inverter
3	Output torque	0~200% of the rated torque of the inverter
4	Output power	0~200% of the rated power of the inverter
5	Output voltage	0~ 120% of the rated voltage of the inverter

6	PULSE pulse input	0.01kHz~100.00kHz
7	Al1	0V~10V
8	AI2	0V~10V (Or 0~20mA)
9	AI3	0V~10V
10	Length	0~Maximum length
11	Counting value	0~Maximum counting value
12	Communication setup	0.0%~100.0%
13	Motor revolving speed	0~maximum output frequency corresponding speed
14	Output current	0.0A~1000.0A
15	Output voltage	0.0V~1000.0V

P5.09	FMP maximum output frequency	0.01kHz~100.00kHz	50.00kHz	☆

When the multifunctional terminal output function selects FMP pulse output, it can set the maximum frequency value of output pulse.

P5.10	AO1 zero offset	-100.0%~+100.0%	0.0%	☆
P5.11	AO1 gain	-10.00~+10.00	1.00	자
P5.12	Expansion card AO2 zero offset	-100.0%~+100.0%	0.00%	☆
P5.13	Expansion card AO2 gain	-10.00~+10.00	1.00	Å

Function codes above are generally used to modify the zero drift of the analog output and also be used to define required AO output curves.

If b represents zero offset, k represents gain, Y represents actual output, and X represents standard output, the actual output is calculated as follows: Y=kX+b

AO1, AO2 zero offset coefficient 100% corresponds to 10V (20mA).

For example, if the analog output is the running frequency, and it is expected to output 8V (16mA) when the frequency is 0, and output 3V (6mA) at the maximum frequency, the standard output 0V to 10V shall be modified to 8V to 3V output. As per the above formula, AO zero offset coefficient shall be set to "80%", while AO gain shall be set to "-0.50".

P5.17	FMR output delay time	0.0s~3600.0s	0.0s	☆
P5.18	RELAY1 output delay time	0.0s~3600.0s	0.0s	☆
P5.19	RELAY2 output delay time	0.0s~3600.0s	0.0s	☆
P5.20	DO1 output delay time	0.0s~3600.0s	0.0s	☆
P5.21	DO2 output delay time	0.0s~3600.0s	0.0s	☆

Set output terminal FMR, relay 1, relay 2, DO1 and DO2 delay time that begins from status changing to real output changing.

		1bit	FMR valid state selection				
P5.22	DO output terminal valid state selection	Positi	ve logic	0	00000	☆	
		Nega	tive logic	1			

Section V. Parameter Function Table

1	0bit RELAY1 terminal valid state setup		
F	Positive logic	0	
1	Negative logic	1	
10	00bit RELAY2 terminal valid state setup		
F	Positive logic	0	
1	Negative logic	1	
	000 bit DO1 terminal valid state setup		
F	Positive logic	0	
1	Negative logic	1	
	DO00 DO2 terminal valid state setup		
F	Positive logic	0	
1	Negative logic	1	

Define output terminal FMR, Relay 1, Relay 2, DO1 and DO2 output logic.

0: Positive logic

Digital output terminals and the corresponding public end connected as effective state, disconnect for invalid state.

1: Negative logic

Digital output terminals and the corresponding public end connected as invalid state, disconnect for effective state.

5-8 Start/stop control: P6.00-P6.15

Code	Description/ Keyboard Display	Setting Range	Range		Change Limit
		Direct startup	0	0	
P6.00	Start mode	Revolving speed tracking startup	1		☆
		Pre-excitation startup (AC asynchronous motor)	2		

0: Direct startup:

When the DC brake time is zero, it starts at the startup frequency.

When the DC brake time is non-zero value, it can perform DC brake before start. It is suitable for the applications where small inertia may cause reverse rotation at the time of startup.

1: Revolving speed tracking startup:

The inverter firstly judges the revolving speed and direction of the motor and then starts at the frequency corresponding to the tracked rotation velocity of the motor, and performs smooth startup of the motor in rotation without impact. It is suitable for the applications where large inertia is restarted due to transient power shutdown. In order to ensure the performance of the rotation velocity tracking startup, motor parameters (Group P1) should be set correctly.

2: Asynchronous pre-excitation startup

It is only valid for asynchronous motor , and is used to establish magnetic field before motor operation. For pre-excitation current, pre-excitation time please refer to function code P6.05 and P6.06.

If pre-excitation time is set to 0, the pre-excitation process will be cancelled ,and start with start frequency. If pre-excitation time is not set to 0, inverter first pre-excitation then starup. In this way, motor dynamic response performance is promoted.

		Start from stop frequency	0		
P6.01	Revolving speed tracking mode	Start from zero speed	1	0	*
	mode	Start from maximum frequency	2		

In order to complete the rotation speed tracking process in the shortest period, it can select the mode of inverter tracking the rotation velocity of motor:

0: Track downward from the frequency at the time of stop, which is generally selected at first.

1: Track upward from zero frequency, which is used when the inverter is restarted upon long period of power shutdown.

2: Track downward from the maximum frequency, which is generally used for power generating load.

P6.02	Revolving speed tracking speed	1~100	20	\$	
-------	--------------------------------	-------	----	----	--

In the mode of revolving speed tracking startup, it is used to select the speed of rotation tracking. The higher the parameter value is, the faster the tracking velocity is, but too higher value may cause unreliable tracking.

P6.03	Start frequency	0.00Hz~10.00Hz	0.00Hz	☆
P6.04	Start frequency holding time	0.0s~100.0s	0.0s	*

To ensure the torque at the time of startup, proper startup frequency shall be set. In addition, in order to set up magnetic flux when waiting for the startup of the motor, the startup frequency shall remain for a certain period of time before accelerating to the setup frequency.

Start frequency P6.03 is not affected by the lower frequency limit. If the frequency reference value (frequency source) is lower than the startup frequency, the inverter cannot start and will be in standby status.

In positive&negative switching process, start frequency holding time does not work. Start frequency holding time is not included in the acceleration time,but included in the simple PLC running time. Example 1:

P0.03=0 means the frequency source is digital reference.

P0.08=2.00Hz means the digital setup frequency is 2.00Hz.

P6.03=5.00Hz means the start frequency is 5.00Hz.

P6.04=2.0s means that the start frequency holding time is 2.0s.

In this case, the inverter will be in the standby status and its output frequency is 0Hz.

Example 2:

P0.03=0 means the frequency source is digital reference.

P0.08=10.00Hz means the digital setup frequency is 10.00Hz.

P6.03=5.00Hz means the start frequency is 5.00Hz.

P6.04=2.0s means that the start frequency holding time is 2.0s.

In this case, the inverter accelerates to 5.00 Hz and remains for 2 seconds, and then accelerates to the setup frequency 10Hz.

P6.05	Start dc braking current /pre-excitation current	0%~100%	0%	*
P6.06	Start dc braking time /pre- excitation time	0.0s~100.0s	0.0s	*

Pre-excitation is used to establish asynchronous motor magnetic field before startup, which would improve response speed.

Start dc current braking is only valid when it is direct startup. Inverter first carries out dc braking according to the setup of start dc current braking , and then carries out operation after start dc braking time.

If dc braking time is set to 0, inverter directly start without dc braking. The bigger the dc braking current is, the greater the braking force is.

If start mode is asynchrounous motor pre-excitation start, inverter first establish magnetic field through pre-excitation current setup, then start to run after pre-excitation time. If set pre-excitation time to 0, inverter would directly start without pre-excitation process.

Start dc braking current/pre-excitation current is the relative percentage of rated current.

		Straight acc. /dec.	0			I
P6.07	Acceleration/ deceleration mode	S curve acc. /dec. mode A	1	0	*	
	mode	S curve acc. /dec. mode B	2			

It is used to select the frequency change mode during the inverter start and stop process.

0: Straight acceleration/ deceleration

The output frequency increases or decreases along the straight line. FIE1 series inverter provides 4 types of acceleration/deceleration time. It can select acceleration/ deceleration time via the multifunctional digital input terminals.

1: S-curve acceleration/ deceleration mode A

The output frequency increases or decreases along the straight line. S curve is generally used in the applications where start and stop processes are relatively gentle, such as elevator and conveyor belt. The acceleration / deceleration time is consistent with the straight acceleration/ deceleration time. Function codes of P6.08 and P6.09 can be respectively defined the time proportion of starting-segment and finishing-segment for S-curve acceleration/ deceleration.

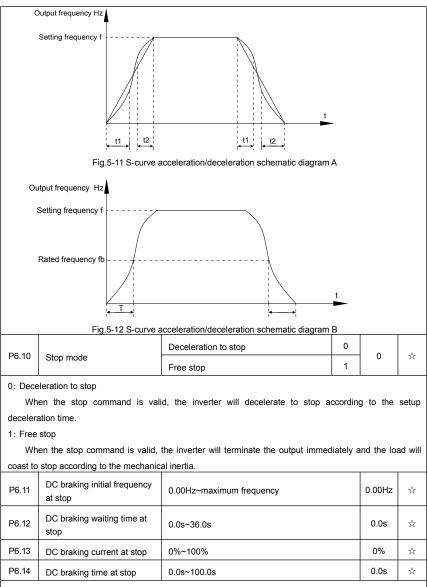
2: S-curve acceleration/ deceleration mode B

In the acceleration/ deceleration curve, the motor rated frequency f_b is always the point of inflexion on S-curve. As shown in 5-12. S curve is generally used in the applications where the high-speed area above the rated frequency as well as short-time acceleration/ deceleration.

When set frequency is above the rated frequency, acceleration/ deceleration time is:

 $= \left(\frac{4}{3} \times \left(\frac{f}{2} \right)^2 + 5 \right)$

f Refers to setup frequency

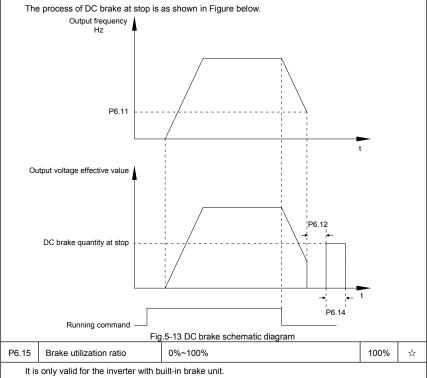

fb Refers to motor rated frequency

T Refers to the time speed-up from 0 to rated frequency

P6.08	Initial-segment time proportion of S-curve	0.0%~(100.0%.P6.09)	30.0%	*
P6.09	Finishing-segment time proportion of S-curve	0.0%~(100.0%.P6.08)	30.0%	*

Function code of P6.08 and P6.09 can be respectively defined the time proportion between the Scurve initial-segment and finishing-segment for S-curve acceleration/ deceleration A. They are required to meet the standard of P6.08+P6.09≤100.0%.

t1 in the Fig.5-11 is the parameter defined by P6.08, in this period of time which the changing slope of output frequency is becoming larger and larger. t2 is defined by parameter P6.09, in this period of time which the changing slope of output frequency change to zero. The changing slope of output frequency is fixing within the time of t1 and t2.


DC brake initial frequency at stop: During the process of decelerating to stop, when the running frequency at stop reaches this frequency, it will start the process of DC brake.

DC brake waiting time at stop: Prior to the beginning of DC brake at stop, the inverter will terminate the output, and then start DC brake after this delay time. It is used to prevent over current fault due to DC brake which starts at the time of higher velocity.

DC brake current at stop: The DC brake quantity added shall be set according to the percentage setting

of the rated current of the inverter. The higher the brake current is, more powerful the brake effect is.

DC brake time at stop: It refers to the continuous DC brake time. If this DC brake time is set to 0, it indicates that there is no DC brake process, and the inverter will stop according to the setting process of decelerating to stop.

It is used to adjust the duty ratio of the brake unit. When the brake utilization ratio is high, then the duty ratio of brake unit action is high, braking effect is strong. But there will be big fluctuation of inverter bus voltage.

5-9 Keyboard and display: P7.00-P7.14

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limit
		MF/REV key invalid	0		
P7.01	MF/REV key function selection	Switching between operation panel com- mand channel & the remote command channel (terminal command channel or serial port command channel)	1	0	*
		Switching between FWD & REV rotation	2		
		Forward jog command	3]	
		Reverse jog command	4		

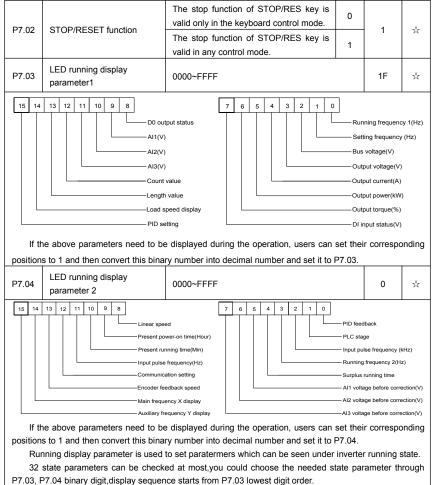
It is used to set the functions of multifunctional MF/REV key.

0: Invalid function

1: Operation panel command channel and remote command channel

It can perform switching between the current command source and keyboard control(local operation). The function key is invalid when current command source is keyboard control.

2: Switching between forward & reverse rotation


Switch the rotary direction of the motor via the MF/REV key on the keyboard is only enabled when the command source is "operation panel command".

3: Forward jog

It can perform forward jog (FJOG) operation via the MF/REV key on the keyboard.

4: Reverse jog

It can perform reverse jog (RJOG) operation via the MF/REV key on the keyboard.

Section V. Parameter Function Table

P7.05	LED stop display parameter	0000~FFFF		33	\$	
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Image: PLC stage Load speed PID setting Bus voltage(V) DI input status DO output status Input pulse frequency(Hz) Reserved Al1 (V) Al2 (V) Al3 (V) Reserved Reserved Al3 (V) Counter Counter If the above parameters need to be displayed at the time of stop, it can set their corresponding positions to 1 and then convert this binary number into decimal number and set it to P7.05. 1.0000 $\dot{\chi}$ P7.06 Load speed coefficient 0.0001~6.5000 1.0000 $\dot{\chi}$						
		necessary, P7.06 is used to adjust the comod speed. For details please refer to P7.12.	respond	aing relatio	onsnip	
P7.07	Inverter module radiator temperature	0.0℃~100.0℃		12℃	•	
	used to display IGBT temperatuerent model's inverter module is	ire. set with different IGBT over temperature pro	tection	value.		
P7.08	Rectifier module radiator temperature	0.0°C~100.0°C		0 °C	•	
	used to display rectifier module erent model's rectifier module is	temperature. set with different over temperature protection	n value.			
P7.09	Accumulative running time	0h~65535h		0h	•	
		ed running time of the inverter. When the acc nultifunctional digital output terminal(12) will d			g time	
P7.10	Product ID	Inverter product ID		-	•	
P7.11	Software version No.	Control board software version No.		-	•	
		No decimal place	0			
	Load speed display decimal	One decimal place	1			
P7.12	digits	Two decimal places	2	1	☆	
		Three decimal places	3			
Decimal point position: It is used to set the number of decimal places of the load speed. For example, if the Load speed display coefficient P7.06 is 2.000,load speed display decimal digits is 2(Two decimal places),when inverter running frequency is 40.00Hz,the load speed will be: 40.00*2.000=80.00(2 decimal digit display) If the inverter is in stopped state, then load speed displays as corresponding set frequency speed.Take set frequency of 50.00Hz as an example,the stop state load speed is: 50.00*2.000=100.00(Two decimal places)						
P7.13	Accumulative power-on time	0h~65535h		-	•	
	splays accumulative power-on ti en it reaches the set power-on ti	ime since leaving the factory. ime (P8.17) , multi-function digital output (24)	ON się	gnal.		

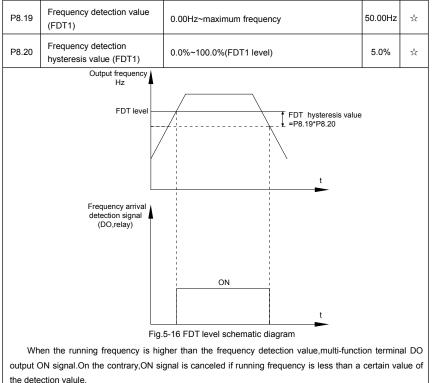
P7.14	Accumulative power consumption	0~65535	-	•						
lt d	isplays the inverter accumulative	power consumption.								
5-10	5-10 Auxiliary function: P8.00-P8.53									
Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit						
P8.00	Jog running frequency	0.00Hz~maximum frequency	2.00Hz	☆						
P8.01	Jog acceleration time	0.0s~6500.0s	20.0s	☆						
P8.02	Jog deceleration time	0.0s~6500.0s	20.0s	☆						
The		nd acc. / dec. time of the inverter at the time of jogg ped according to direct startup mode(P6.00=0) and	0	ite to						
P8.03	Acceleration time 2	0.0s~6500.0s	10.0s	☆						
P8.04	Deceleration time 2	0.0s~6500.0s	10.0s	☆						
P8.05	Acceleration time 3	0.0s~6500.0s	10.0s	☆						
P8.06	Deceleration time 3	0.0s~6500.0s	10.0s	☆						
P8.07	Acceleration time 4	0.0s~6500.0s	10.0s	☆						
P8.08	Deceleration time 4	0.0s~6500.0s	10.0s	☆						
P8. the 4 g	03 to P8.08 parameters have th	beed-down time,P0.17/P0.18 and 3 groups above. be same definition with P0.17 and P0.18. You can s ation of DI multi-function digital input terminal.Fc .01~P4.05 for details.								
P8.09	Hopping frequency 1	0.00Hz~maximum frequency	0.00Hz	☆						
P8.10	Hopping frequency 2	0.00Hz~maximum frequency	0.00Hz	☆						
P8.11	Hopping frequency amplitude	0.00Hz~maximum frequency	0.00Hz	☆						
Output frequency Hz Hopping frequency 2 Hopping frequency 2 Hopping frequency amplitude Hopping frequency 1										
	Fig.5-	14 Skip frequency schematic diagram								
Wh	en set frequency is within the	range of hopping frequency, the actual running fre	equency w	/ill run						

hopping frequency. FIE1 can set 2 hopping frequency points, if both of them are set to 0, then the hopping frequency function is canceled.Hopping frequency and hopping frequency amplitude schematic is shown in Fig5-14.

close to the set frequency of hopping frequency. Inverter can avoid load mechanical resonance by setting

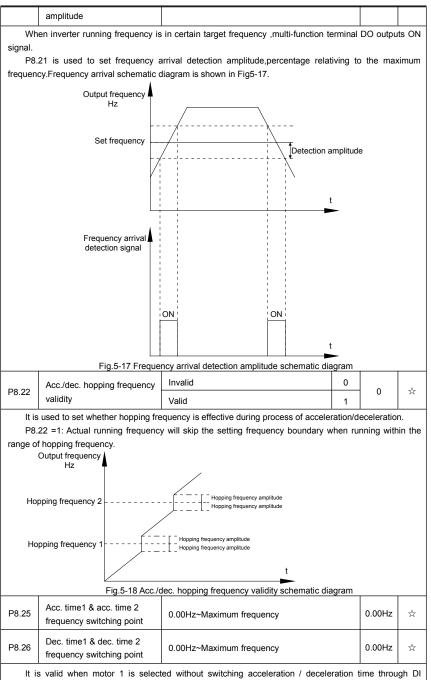
Dead zone time of forward & P8.12 0.0s 0.00s~3000.0s ☆ reverse rotations It refers to the transit time at the 0Hz output point when the inverter switches between forward rotation and reverse rotation. As shown in figure 5-15. Output frequency Hz Forward t Reverse Dead zone time Fig.5-15 Rotation dead zone time schematic diagram Reverse rotation enabled 0 P8.13 Reverse rotation control 0 \$ Reverse rotation forbidden 1 It is used to set if the inverter could run in reverse rotation state. If reverse rotation is not permitted, P8.13 should be set to 1. 0 Run with frequency lower limit Set frequency below lower P8.14 0 \$ 1 stop limit running mode 2 0 speed operation It is used to select the running status of the inverter when the set frequency is lower than the frequency lower limit. FIE1 offers 3 kinds of running mode to meet all kins of applications. P8.15 Droop control 0.00Hz~10.00Hz 0.00Hz \$ It is used for load distribution when multiple motors drive the same load. Droop control refers to inverter output frequency decreasing with added load. In this way, motor with heavy load output frequency decrease more, which could decrease the motor load to realize multiple motor load uniformity . This parameter is the output frequency declining value with rated output load. Accumulative power-on time P8.16 0h~65000h 0h \$ arrival setup When the accumulative power on time (P7.13) reaches the P8.16 set value, inverter multi-function digital DO would output ON signal. E.g:Inverter outputs fault alarm after 100-hour power-on time: Virtual terminal DI1 function: user-defined fault1:A1.00=44; Virtual terminal DI1 valid state: from virtual DO1:A1.05=0000: Virtual terminal DO1 function: power-on time arrived :A1.11=24: Set cumulative power-on time to 100 hours:P8.16=100. When accumulative power-on time reaches 100 hours, inverter outputs fault number 26= E.ArA.

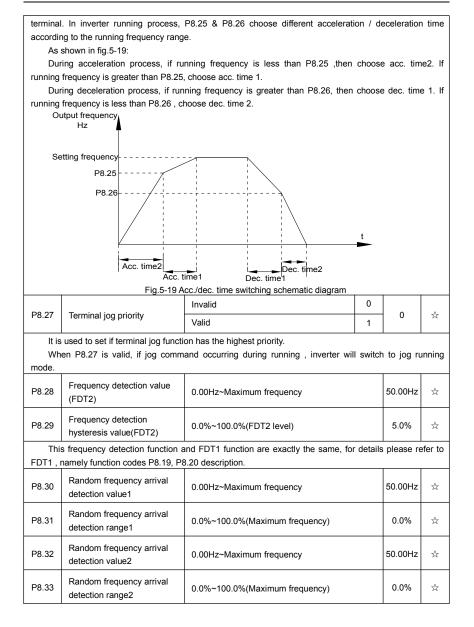
P8.17	Accumulative running time arrival setup	0h~65000h		0h	☆		
When the accumulated running time (P7.09) reaches this set running time, the digital output terminal							
DO outp	outs the ON signal of running tim	e arrival.					
P8.18 Start protection selection	Invalid	0	0				
	Start protection selection	Valid	1		☆		
Thi	a parameter is used to improve t	he adfatu protection apofficient					

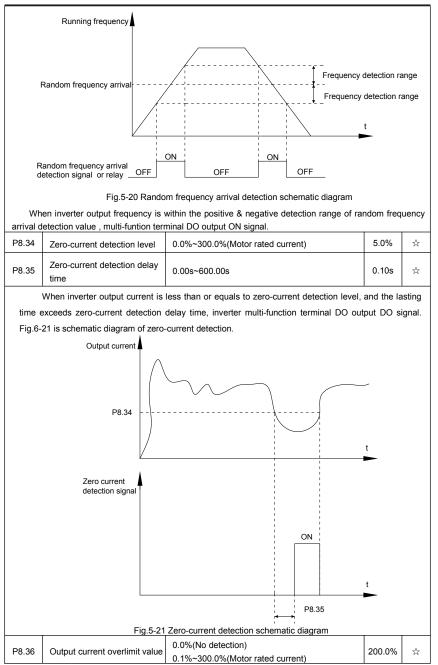

This parameter is used to improve the safety protection coefficient.

If it is set to 1, it has two functions:

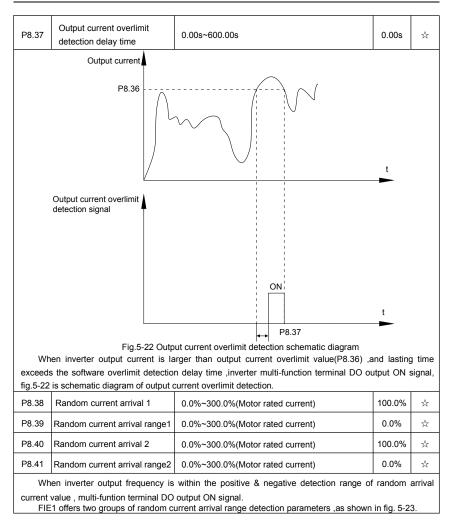
1. If running command is valid upon power on (E.g:Closed-state before terminal running command power on), inverter will not respond to the running command. Users should first cancel running command, after running command coming into valid again, the inverter then responds.


2. If running command is valid upon inverter fault reset, inverter will not respond to the running command. Running protection status can be eliminated after cancelling the running command.


This can prevent the dangers caused by the automatic running of the motor under unexpected condition.


It is used to set the detection value of the output frequency and the hysteresis value upon release of the output action.P8.20 is the hysteresis frequency percentage relativing to P8.19 frequency detection value.

P8.21 Fr	Frequency arrival detection	0.00~100% maximum frequency	0.0%	☆	
----------	-----------------------------	-----------------------------	------	---	--



	Section V.	Parameter	Function	Table
--	------------	-----------	----------	-------

Section V. Parameter Function Table

		ection v. Farameter Function Table			
	Output current				
Ra	andom current arrival			arrival rang arrival rang	
			t	-	
	Random current arrival detection signal or relay OFF	ON ON OFF OFF	_		
	Fig.5-23 Rando	om current arrival detection schematic diagra	m		
P8.42	Timing function solution	Invalid	0	0	☆
1 0.12	Timing function selection	Valid	1	Ŭ	~
		P8.44 setup	0	-	
P8.43	Dunning time timing colorities	Al1	1		☆
10.45	P8.43 Running time timing selection	Al2	2		A
Al3(Potentiometer)					
Ana	alog input range 100% correspor	nds to P8.44.			
P8.44	Timing running time	0.0Min~6500.0Min		0.0Min	☆
Wh setup , r Eac	multi-function terminal DO output th time inverter startup from 0 st	timing. Inverter would automatically stop a		Ū.	
P8.45	Al1 input voltage protection value lower limit	0.00V~P8.46		3.10V	☆
P8.46	AI1 input voltage protection value upper limit	P8.45~10.00V		6.80V	☆
		an the set of P8.46 or less than that of P8.47			
		un", which indicating if Al1 input voltage is w	ithin the		-
P8.47	Module temperature arrival	0.00°C∼100°C	1	75℃	*
	temperature arrived the set valu	O outputs "module temperature arrival" ON e of P8.47.	v signa	ii when in	verter
		Cooling fan runs at motor operation	0		
P8.48	Cooling fan control	Cooling fan runs after power-on	1	0	☆
P8. inverter	used to select cooling fan action 48=0:Cooling fan operates whe stop status. 48=1:Cooling fan is always runn	n inverter in running status or radiator tem	peratur	e over 40	°Cin

P8.49	Wake up frequency	Sleep frequency(P8.51) ~ maximum frequency (P0.10)	0.00Hz	☆
P8.50	Wake up delay time	0.0s~6500.0s	0.0s	☆
P8.51	Sleep frequency	0.00Hz~wake-up frequency(P8.49)	0.00Hz	☆
P8.52	Sleep delay time	0.0s~6500.0s	0.0s	☆

This group of function codes are used to realize sleep and wake up function.

During operation:when set frequency is less than or equals to sleep frequency(P8.51), inverter would step into sleep state and stop after sleep delay time(P8.52).

If inverter is in sleep state and current running command is valid, when set frequency is no less than P8.49 wake-up frequency, inverter will start to run after P8.50 wake-up delay time.

Generally, please set wake-up frequency no less than sleep frequency. Sleep function and wake-up function are valid when both wake-up frequency and sleep frequency are set to 0.00 Hz.

When enabling sleep function(frequency source :PID), PID calculation selection in sleep state is influenced by function code PA.28(PA.28=1).

P8.53	The running time arrival	0.0Min~6500.0Min	0.0Min	☆
14/1-	and the subscription of the subscription of the	- D0 50 anti-alian investment if function DO auto-	4 "The sure of	

When the running time reached the P8.53 set value, inverter multi-function DO output "Then running time arrival" ON signal.

5-11 Overload and protection: P9.00-P9.70

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limit
P9.00	Motor overload protection selection	Invalid Valid	0 1	1	☆
P9.01	Motor overload protection gain	0.20~10.00		1.00	☆

P9.00=0: Without motor overload protection function. It is recommended to install a thermal relay between the motor and the inverter.

P9.00=1: The inverter has overload protection function for the motor according to motor overload protection inverse time limit curve.

Motor overload protection inverse time limit curve: 220%×(P9.01)× motor rated current, it will report motor overload fault after it lasts for one minute. When the operating current of the motor reaches the current of 150%×(P9.01)times the rated current of the motor, it will report motor overload after it lasts 60 minutes.

Users can set value of P9.01 according to the motor actual overload ability. If the parameter is set too big, it may cause danger of motor overheating damage without inverter fault report.

P9.02 Motor overload pre-alarm coefficient 50%~100% 80% 5	9.02	P9.02	·	50%~100%	80%	☆	
---	------	-------	---	----------	-----	---	--

This function is used before motor overload fault by giving pre-alarm signal through multi-function terminal DO.This pre-alarm coefficient is used to determine the warning timing before motor overload protection. The higher the value, the shorter the warning timing will be.

When the inverter output current is accumulated more than the product of inverse time limit curve with P9.02, multi-function terminal DO output "Motor overload pre-alarm"ON signal.

P9.03	Over-voltage stall gain	0(no over-voltage stall)~100	0	☆
P9.04	Over-voltage stall protection voltage	120%~150%(3 phase)	130%	☆

Over-voltage stall gain: It adjusts the inverter's capacity in suppressing the current stall. The bigger the value is, the stronger the capacity is. For the load with small inertia, the value should be small. Otherwise, the dynamic response of the system would be slow. For the load with large inertia, the value should be large. Otherwise, the suppressing result will be poor, and over voltage fault may be caused.

Over voltage stall protection voltage: It selects the protection point for over voltage stall function. When the value is exceeded, the inverter starts to execute the over voltage stall protection function.

P9.05	Over current stall gain	0~100	20	☆
P9.06	Over current stall protection current	100%~200%	150%	\$

Over current stall: When the output current of the inverter reaches setup of over current stall protection current (P9.06), if the inverter is running with acceleration speed, it will stop acceleration. When the inverter is running with constant speed, it will reduce the output frequency. When the inverter is running with deceleration speed, it will stop deceleration and the operating frequency will not recover normally till the current is less than the current stall protection current (P9.06).

Over current stall protection current: It selects the protection point for over current stall function. When the value is exceeded, the inverter starts to execute the over current stall protection function. This value is relative to the percentage of rated current of the motor.

Over current stall gain: It adjusts the inverter's capacity in suppressing the over current stall. The bigger the value is, the stronger the capacity is.

P9.07	Ground short circuit protection	Invalid		0		☆
P9.07	upon power-on	Valid		1	1	X
	etermines whether the motor ha	U U	short circuit fault upon power-on. e period of time after power-on.	If this f	function is	valid
P9.09	Fault auto reset times	0~20			0	☆
	en the inverter selects fault au ed, the inverter will perform fault	,	it is used to set the times of auton.	o reset.	If this va	alue i
D0 40	Fault auto reset FAULT DO	No actio	n	0		
P9.10	9.10 selection			1	0	☆
					>	
	nverter has been set of fault aut ault auto reset time.		inction, P9.10 is used to set if FA			or no
		0.1s~10			1.0s	or nc
during f P9.11	ault auto reset time.	0.1s~10	10.0s			
during f P9.11	ault auto reset time. Fault auto reset interval	0.1s~10	10.0s			
during f P9.11	ault auto reset time. Fault auto reset interval	0.1s~10	00.0s alarm to auto reset. Input phase lack protection sele			
during f P9.11 The	ault auto reset time. Fault auto reset interval	0.1s~10 n the fault 1bit	00.0s alarm to auto reset. Input phase lack protection sele en	ction	1.0s	*
during f P9.11	ault auto reset time. Fault auto reset interval a waiting time of the inverter from	0.1s~10 the fault 1bit Forbidd	00.0s alarm to auto reset. Input phase lack protection sele en	ction 0		
during f P9.11 The	ault auto reset time. Fault auto reset interval e waiting time of the inverter from Input phase lack protection	0.1s~10 n the fault 1bit Forbidd Allowed	00.0s alarm to auto reset. Input phase lack protection sele en Contactor attracting protection	ction 0	1.0s	\$

FIE1 series inverter above 18.5kW (type G) has input phase fault protection function. For the inverter below 18.5kW (type P), the input phase fault protection function is invalid at any setup.

D0 42	P9.13 Output phase lack protection	Invalid	0	1	
P9.13	selection	valid	1		☆
It is	used to choose whether to prote	ect output open-phase.		_	
P9.14	The first fault type	0~51		-	•
P9.15	The second fault type	0~51		-	•
P9.16	The latest fault type	0~51		-	•

It records the latest 3 fault types for the inverter: 0 means no fault and 1 to 51 correspond to ERR01 to ERR51.Refer to Chapter 6 for the details.

Table of fault type :

No.	Fault display	Fault type
0	Reserved	No fault
1	1=E.IGbt	Reserved
2	2=E.oCAC	Acceleration over current
3	3=E.oCdE	Deceleration over current
4	4=E.oCCo	Constant speed over current
5	5=E.oUAC	Acceleration over voltage
6	6=E.oUdE	Deceleration over voltage
7	7=E.oUCo	Constant speed over voltage
8	8=E.CPF	Control power supply fault
9	9=E.LU	Undervoltage fault
10	10=E.oL1	Inverter overload
11	11=E.oLt	Motor overload
12	12=E.ILF	Input phase lack
13	13=E.oLF	Output phase lack
14	14=E.oH1	Module overheating
15	15=E.EloF	External equipment fault
16	16=E.CoF1	Communication fault
17	17=E.rECF	Contactor fault
18	18=E.HALL	Current inspection fault
19	19=E.tUnE	Motor tuning fault
20	20=E.PG1	Encoder /PG card fault
21	21=E.EEP	EEPROM read & write fault
22	22=E.HArd	Inverter hardware fault
23	23=E.SHot	Short circuit to ground fault
24	Reserved	Reserved
25	Reserved	Reserved
26	26=E.ArA	Total running time arrival fault
27	27=E.USt1	User-defined fault 1
28	28=E.USt2	User-defined fault 2
29	29=E.APA	Total power-on time arrival fault

	30	30=E.ULF	Load off fault	
	31	31=E.PID	PID feedback loss during operation fault	
	40	40=E.CbC	Each wave current limiting fault	
	41	41=E.tSr	Motor switching fault	
	42	42=E.SdL	Excessive speed deviation fault	
	43	43=E.oSF	Motor overspeed fault	
	45	45=E.oHt	Motor overtemperature fault	
	51	51=E.PoSF	Initial position fault	
P9.17	' Third fa	ult frequency	The latest fault frequency	•
P9.18	B Third fa	ult current	The latest fault current	•
P9.19	Third fa	ult bus voltage	The latest fault bus voltage	•
P9.20			The latest fault digital input terminal status, order as below: BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 DI0 DI9 DI8 DI7 DI6 DI5 DI4 DI3 DI2 DI1 When input terminal status is ON, it's corresponding binary digit is 1. OFF corresponds to 0. All DI status are converted to decimal display.	•
P9.21	Third fa	ult output terminal	The latest fault digital output terminal status, order as below : BIT4 BIT3 BIT2 BIT1 BIT0 DO2 DO1 REL2 REL1 FMP When output terminal status is ON, it's corresponding binary digit is 1. OFF corresponds to 0. All DO status are converted to decimal display.	•
P9.22	2 Third fa	ult inverter state	Reserved	•
P9.23	3 Third fa	ult power-on time	The latest fault power-on time	•
P9.24	Third fa	ult running time	The latest fault running time	•
P9.27	' Second	fault frequency	The latest fault frequency	•
P9.28	3 Second	fault current	The latest fault current	•
P9.29	Second	fault bus voltage	The latest fault bus voltage	•
P9.30	Second fault input terminal		The latest fault digital input terminal status, order as below : $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	•

P9.31	Second fault output terminal	The latest fault digital input terminal st below : BIT4 BIT3 BIT2 BIT1 BIT0 DO2 DO1 REL2 REL1 FMP When output terminal status is ON, it's binary digit is 1. OFF corresponds to 0. are converted to decimal display.	corres	ponding	•
P9.32	Second fault inverter state	Reserved			•
P9.33	Second fault power-on time	The latest fault power-on time			•
P9.34	Second fault running time	The latest fault running time			•
P9.37	First fault frequency	The latest fault frequency			•
P9.38	First fault current	The latest fault current			•
P9.39	First fault bus voltage	The latest fault bus voltage			•
P9.40	First fault input terminal	The latest fault digital input terminal status, order as below : $\begin{array}{c c c c c c c c c c c c c c c c c c c $			•
P9.41	First fault output terminal	The latest fault digital input terminal status, order as below : BIT4 BIT3 BIT2 BIT1 BIT0 DO2 DO1 REL2 REL1 FMP When output terminal status is ON, it's corresponding binary digit is 1. OFF corresponds to 0. All DO status are converted to decimal display.			•
P9.42	First fault inverter state	Reserved			•
P9.43	First fault power-on time	The latest fault power-on time			•
P9.44	First fault running time	The latest fault running time			•
P9.47	Fault protection action selection 1	1bit Motor overload(Fault No.11= E.oLt) Free stop Stop according to stop mode Keep on running 10bit Input phase lack(Fault No 12=E.IPh Free stop	0 1 2	00000	*

Section V. Parameter Function Table

		section	v. Farameter Function Table			
		100 bit	Input phase lack(Fault No 13=E.oP	ho)		
		Free	stop	0		
		Stop	according to stop mode	1		
		1000 bit	External fault(Fault No.15=E.EIOF)			
		Free	stop	0		
		Stop	according to stop mode	1		
		10000 bit	Abnormal communication(Fault No.16=E.CoF1)			
		Free	stop	0		
		Stop	according to stop mode	1		
		1bit	Encoder fault (Fault No.20=E.PG1)			
		Free	stop	0		
		Switc mode	h to VF, stop according to stop	1		
		Switch to VF, keep on running		2		
P9.48	Fault protection action	10bit	Abnormal communication (Fault No.21=E.EEP)		00000	삷
F 9.40	selection 2	Free stop		0	00000	ы
		Stop according to stop mode		1		
		100bit	Reserved			
		1000 bit	Motor overheating(Fault No.45= E.	oHt)		
		10000 bit	Runing time arrival (Fault No.26= E (Same with P9.47 1 bit)	ArA)		
		1bit	User-defined fault 1 (Fault No.27= E (Same with P9.47 1 bit)	.USt1)		
		10bit	User-defined fault 2(Fault No.28= E. (Same with P9.47 1 bit)	USt2)		
		100bit	Power-on time arrival(Fault No.29= I (Same with P9.47 1 bit)	E.APA)		
P9.49	Fault protection action	1000 bit	Load off (Fault No.30= E. ULF)		00000	☆
	selection 3	Free	stop	0		~
		Stop	according to stop mode	1		
			rate to 7% of motor rated frequency. atically recover to the set frequency if d off.	2		
		10000 bit		•		
P9.50	Fault protection action	1bit	Excessive speed deviation(Fault N E.SdL) (Same with P9.47 1 bit)		00000	☆

selection 4	Motor supervelocity(Fault No.43= E.oSF) (Same with P9.47 1 bit)	
	100bit Initial position fault(Fault No.51= E.PoSF) (Same with P9.47 1 bit)	
	1000 bit Reserved	
	10000 bit Reserved	

If it is set to "free stop", inverter displays E.****, and stop directly.

If it is set to "stop according to stop mode", inverter displays A.****, and stop according to the set stop mode. Inverter displays E.**** after stopped.

If it is set to "keep on running", inverter displays A.**** and continues running. Running frequency is set through P9.54.

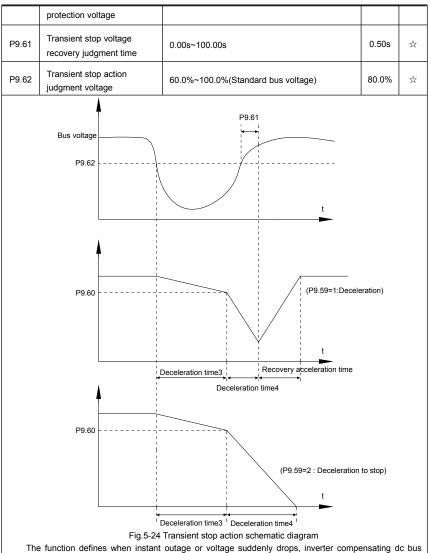
001 1110	agii i o.o i.				
P9.54		Operation with the current running frequency	0		
		Operation with the set frequency	1		
	Continued to run when fault frequency selection	Operation with the upper limit frequency	2	0	☆
	requercy selection	Operation with the lower limit frequency	3		
		Operation with the abnormal backup frequency	4		
P9.55	Abnormal backup frequency	60.0%~100.0%		100.0%	☆

When fault occuring during inverter operation , and the fault processing mode set to continuing to run, inverter would display A⁺⁺ and run with the P9.54 set frequency.

When choosing running frequency as abnormal backup frequency, set value of P9.55 is percentage of the maximum frequency.

P9.56	Motor temperature sensor	No temperature sensor	0		
		PT100	1	0	☆
		PT1000	2		
P9.57	Motor overheating protection threshold	0°C ~200 °C		110 ℃	☆
P9.58	Motor overheating pre-alarm threshold	0°C~200°C		90°C	☆

Temperature signal of motor temperature sensor should be connected to multi-function I/O expansion card(optional). Analog input signal Al3x can be used as motor temperature sensor input. Motor temperature sensor signal is connected to Al3, PGND end.


Al3x analog input end of FIE1 supports PT100&PT1000 motor temperature sensors. Correct sensor type should be set during operation. Motor temperature value is displayed in U0.34.

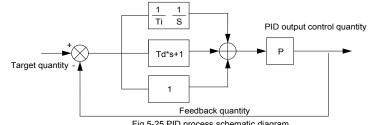
When motor temperature exceeding the motor overheating protection threshold (P9.57), inverter would give fault alarm and processing according to the selected protection action mode.

When motor temperature exceeding the motor overheating pre-alarm threshold(P9.58), inverter multifunction digital DO would output motor overheating pre-alarm ON signal.

		Invalid	0		
P9.59	Transient stop selection	Deceleration	1	0	☆
		Deceleration to stop	2		
P9.60	Transient stop action pause	80.0%~100.0%		90.0%	☆

Section V. Parameter Function Table

The function defines when instant outage or voltage suddenly drops, inverter compensating dc bus voltage decrease by load feedback enery through decreasing output revolving speed, which maintaining inverter running.


P9.59=1:When instant outage or voltage suddenly drops, inverter decelerates. Inverter normally accelerates to the set running frequency until bus voltage came to normal. Bus voltage has restored to normal is based on normal bus voltage duration time. If the time exceeds P9.61 set value, bus voltage is normal.

P9.59=2:When instant outage or voltage suddenly drops, inverter decelerates to stop.					_
P9.63	Load-off protection selection	Invalid	0	0	☆

		Valid	1					
P9.64	Load-off detection level	0.0%~100.0%(Motor rated current)		10.0%	☆			
P9.65	Load-off detection time	0.0s~60.0s		1.0s	☆			
Wh	When the protection function is valid and inverter output current is less than load-off detection level							
P9.64(d	uration time $>$ P9.65), inverte	r output frequency automatically decrease	ed to 7	% of the	rated			
•	cy. In the load-off protection peri frequency.	od, if the load restored, the inverter automa	tically r	estore to th	ne set			
P9.67	Over speed detection value	0.0%~50.0%(Maximum frequency)		20.0%	☆			
P9.68	Over speed detection time 0.0s~60.0s		1.0s	☆				
This	s function is only valid in speed s	sensor vector control.						
Inve	erter fault alarm when motor ac	ctual revolving speed exceeds the set frequencies	uency(e	xcess valu	ue >			
, P9.67	uration time >P9.68) .Fault No	. 43=E.oSF.						
P9.69	Excessive speed deviation detection value	0.0%~50.0%(Maximum frequency)		20.0%	☆			
P9.70	Excessive speed deviation detection time	0.0s~60.0s		5.0s	☆			
This	s function is only valid in speed s	sensor vector control.						
Inverter fault alarms when deviation detected between motor actual revolving speed and the set								
frequency(deviation>P9.69, duration time>P9.70). Fault No. 42=E.SdL.								
P9.70=0.0s:Excessive speed deviation fault detection is canceled.								

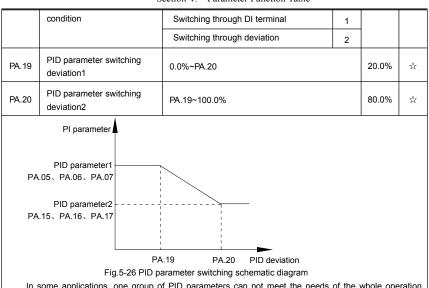
5-12 PID function group: PA.00-PA.28

PID control is a common method used in process control. Through the proportional, integration and differential calculation on the difference between feedback signal and target signal of the controlled parameter, PID control adjusts the output frequency of the inverter and forms negative feedback system, making the controlled parameter stabilized on the target parameter. PID control is applied to several process controls such as flow control, pressure control and temperature control. The schematic diagram for control is as shown in Fig. 5-25.

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limit
	PA.00 PID reference source	PA.01 setup	0	0	
PA.00		Al1	1		☆
		AI2	2		

Section V. Parameter Function Table

	3	ection V. Parameter Function Table			
		Al3(Potentiometer)	3		
		PULSE(DI5)	4		
		Communication	5		
		MS command	6		
PA.01	PID reference value	0.0%~100.0%		50.0%	☆
		reference channel of process PID.			
	•	relative value, set range is 0.0%~100.0%. If f making the two relative value the same.	PID feed	dback valu	ie is a
TCIALIVE	value as well, i ib play the fole of	Al1	0		
		Al2	1	-	
		AI3(Potentiometer)	2		
		AI1-AI2	3		
PA.02	PID feedback source	PULSE(DI5)	4	0	☆
-		Communication	5		
		Al1+Al2	6		
		MAX(AI1 , AI2)	7	-	
		MIN(AI1 , AI2)	8		
It is	used to select the feedback cha		-		
Fee	dback value of process PID is a	relative value, set range is 0.0%~100.0%.			
PA.03	PID action direction	Positive action	0	0	☆
		Negative action	1		
the outp case. Neg decreas	ut frequency of the inverter to n gative action: If the feedback s	nal is smaller than the PID reference signal nake PID reach balance. The winding tension signal is smaller than the PID reference s inverter to make PID reach balance. The	in PID o	control is s t is requir	such a
This	s function is influenced by function	on 35,please pay attention during operation.			
PA.04	PID reference feedback range	0~65535		1000	☆
U0.16 P PID	ID feedback. reference feedback related to the	dimensionless unit which is used to displate ne value 100.0%, corresponding to a given f %,PID given display U0.15 is 2000.	-		
PA.05	Proportional gain K _{p1}	0.0~100.0		20.0	☆
PA.06	Integration time Ti ₁	0.01s~10.00s		2.00s	☆
PA.07	Differential time Td1	0.00~10.000		0.000s	☆
is, the g deviatio	reater the adjustable strength w n between PID feedback value	er determines the adjustable strength of PID rill be. When the parameter is set to 100.0, and reference value is 100.0%, the range f nds is the maximum frequency (integration	it mean for the	s that whe PID regula	en the ator to


effect are omitted).

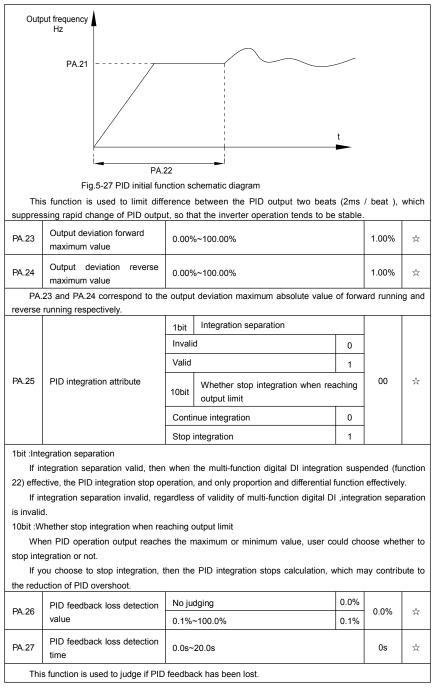
Integration time Ti₁: determines the strength of PID integration regulation. The shorter the integration time , the greater adjustable strength will be. Integration time means that when the deviation between PID feedback value and reference value is 100%, the adjustment by the integration regulator (proportional effect and differential effect are omitted) after continuous adjustment in this period reaches the maximum frequency.

Differential time Td₁: determines the degree of adjustment that PID regulator performs on the derivation between PID feedback value and reference value. Differential time means that if the feedback value changes 100% within this time, the adjustment by the differential regulator (proportional effect and differential effect are omitted) will reach the maximum frequency. The longer differential time is, the higher the degree of adjustment will be.

PA.08	PID cutoff frequency of reverse rotation	0.00~maximum frequency		2.00Hz	☆
In s	some cases, only when the frequ	iency of the PID output is negative (i.e., freq	uency i	nversion)	could
PID put	the reference and feedback to	the same state. High inversion frequency	is not a	allowed in	some
certain	cases, PA.08 is used to determin	e reverse frequency upper limit.			
PA.09	PID deviation limit	0.0%~100.0%		0.0%	☆
lt is	s used to set the maximum allow	wable deviation between the system feedba	ck valu	e and refe	erence
value. When the deviation between the PID feedback and reference is within this range, the PID stops					
adjustm	ent. The deviation limit is calc	ulated according to the percentage of the	PID s	etup sour	ce (or
feedbac	k source). When deviation be	tween reference value and the feedback	value i	is small,	output
frequen	cy is stability constant. It's espec	ally effective for some closed loop control o	ccasion	s.	
PA.10	PID differential amplitude limit	0. 00%~100.00%		0.10%	☆
In I	PID regulation, the role of diffe	rential is relatively sensitive that system os	scillatior	n may be	easily
caused.	Therefore, range of PID differe	ntial regulation has been limited to a small	range. F	PA.10 is u	sed to
set PID	differential output range.				
PA.11	PID reference change duration	0.00s~650.00s		0.00s	☆
PIC	reference changes according to	o this parameter value, which corresponds t	o the tir	ne taken f	for the
	erence to change from 0% to 100				
	•	given value linear changes in accordance	with gi	ven time,	which
can red	uce system adverse effect cause	ed by given mutation.			
PA.12	PID feedback filter time	0.00s~60.00s		0.00s	☆
PA.13	PID output filter time	0.00s~60.00s		0.00s	☆
PA.	12 is used for filtering of PID fe	edback. The filtering helps to reduce the int	fluence	of the fee	dback
interfere	ence, but brings response perform	mance of process closed-loop system.			
PA.	13 is used for filtering of PID o	utput frequency. The filtering helps to reduce	ce the r	mutations	of the
output f	requency, but brings response po	erformance of process closed-loop system.			
PA.14	Reserved	-		-	-
PA.15	Proportional gain K _{p2}	0.0~100.0		20.0	☆
PA.16	Integration time Ti ₂	0.01s~10.00s		2.00s	☆
PA.17 Differential time Td ₂ 0.00~10.000		0.000s	☆		
PA.18	PID parameter switching	No switching	0	0	☆

Section V. Parameter Function Table

In some applications, one group of PID parameters can not meet the needs of the whole operation process. Different parameters are used for different situations.

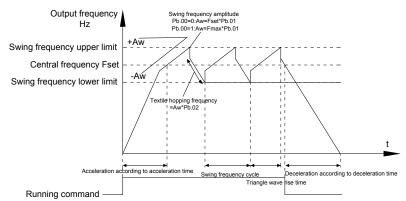

This group of function codes is used to switch 2 groups of PID parameters. Regulator parameters PA.15~PA.17 and parameter PA.05~PA.07 have the same setting method.

Two groups of PID parameters can be switched through multi-function digital DI terminal as well as PID deviation auto switching.

PA.18=1:Set multi-function terminal to 43(PID parameter switching terminal). Choose parameter group 1(PA.05~PA.07) when terminal invalid, while valid please choose parameter group 2(PA.15~PA.17).

PA.18=2:When deviation absolute value between reference and feedback is less than PA.19 set value, PID parameters select parameter group 1. When deviation absolute value between reference and feedback is greater than PA.20 set value, PID parameters select group 2. When deviation absolute value between reference and feedback is within the range of switching deviation 1 & 2 , PID parameters select linear interpolation value of the 2 PID parameter groups.As shown in 5-26.

PA.21	PID initial value	0.0%~100.0%	0.0%	☆	
PA.22	PID initial value retention time	0.00s~650.00s	0.00s	☆	
Inverter fixed startup value is PID initial value(PA.21) .PID starts closed-loop regulation after PID initial					
value retention time(PA.22).					


When PID feedback value is less than PA.26 set value, and lasted for more than PA.27 set value,					
inverter fault alarm. Fault No. 31= E.PID.					
PA.28 PID stop operation	Stop without operation	0			
	PID stop operation	Stop with operation	1	0	☆
It is used to select if PID keeping operation under PID stop status. Generally PA.28=0 in stop status.					

5-13 Swing frequency, fixed length and counting: Pb.00-Pb.09

The swing frequency function is applicable to textile and chemical fiber industries and applications where traversing and winding functions are required.

Swing frequency means that the inverter output frequency swings up and down with the set frequency as the center, and the trace of running frequency at the time axis is as shown in Fig. 5-28. The swing amplitude is set by Pb.00 and Pb.01.

When Pb.01 is set to 0, it means the swing amplitude is 0, and the swing frequency is invalid.

Fig 5-28 S	wing frequency	/ schematic diagram
FIY.3-20 3	wing nequency	schematic ulayiam

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limit
DI: 00		Relative to the center frequency	0		
Pb.00	Swing setup mode	Relative to the maximum frequency	1	0	☆

It is used to determine the swing amplitude benchmark value.

0: Relative to the center frequency (P0.07 frequency source): It is a variable swing amplitude system, with the swing amplitude changing with the center frequency (setup frequency).

1: Relative to the maximum frequency (P0.10 maximum output frequency): It is a fixed swing amplitude system, with fixed swing amplitude that is calculated by the maximum frequency.

Pb.01	Swing frequency amplitude	0.0%~100.0%	0.0%	☆
Pb.02	Jump frequency amplitude	0.0%~50.0%	0.0%	☆

It is used to determine the amplitude value and the jump frequency value. Swing relative to the center frequency (variable swing, select Pb.00=0): Swing (AW) =frequency source P0.07 setup times swing amplitude Pb.01. Swing relative to the maximum frequency (fixed swing, Pb.00=1): Swing (AW) = maximum frequency P0.10 times swing amplitude Pb.01. When the swing is running, the jump frequency relative to the swing= Swing (AW) times jump frequency amplitude Pb.02.

If "Swing relative to the center frequency (variable swing amplitude, Pb.00=0)" is selected, the jump

frequency is variable value.

If "Swing relative to the maximum frequency (fixed swing, Pb.00=1)" is selected, the jump frequency is fixed value.

The swing operation frequency is constrained by upper frequency limit and lower frequency limit.

Pb.03	Swing frequency cycle	0.0s~3000.0s	10.0s	☆
Pb.04	Triangle wave rise time coef.	0.0%~100.0%	50.0%	☆

Swing frequency cycle: It defines the time of a whole cycle for rising and falling of the swing frequency. The coefficient of triangle wave rising time is Pb.04, it is time percentage of triangle rising time relativing to swing frequency cycle Pb.03.

Triangle wave rising time= Swing frequency cycle Pb.03 times triangle wave rising time coefficient Pb.04 (unit: s)

Triangle wave falling time= Swing frequency cycle Pb.03 times (1-triangle wave rising time coefficient Pb.04) (unit: s)

Pb.05	Setup length	0m~65535m	1000m	☆
Pb.06	Actual length	0m~65535m	0m	☆
Pb.07	Pulse number per meter	0.1~6553.5	100.0	☆

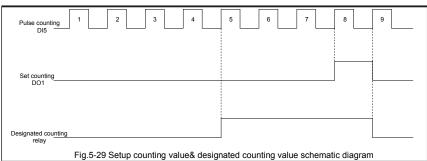
The three parameters such as setup length, actual length and number of pulses per meter are mainly used for fixed-length control.

Length information needs to be collected through multi-function digit input terminal,you can get Pb.06 actual length by division of terminal sampling pulse number and Pb.06. When actual length is longer than reference length Pb.05, multi-function digit terminal DO output "length arrival" ON signal.

During the process of fixed-length control, length reset operation(by multi-function terminal DI)is permitted(choose DI function selection as 28),for specifications please refer to P4.00~P4.09.

Set corresponded input terminal function to "length counting input" (function 27). When pulse frequency is high, only DI5 port can be used.

Pb.08	Counting value setup	1~65535	1000	☆
Pb.09	Designated counting value	1~65535	1000	☆


Counting value should be collected through multi-function digital input terminal. Corresponding input terminal should be set to the function of "counter input" (function 25) in application. DI5 terminal should be used when pulse frequency is high.

When counting value reaches Pb.08 set value, multi-function digit DO output "setup counting value arrival" ON signal, then stop counting.

When counting value reaches Pb.09 set value, multi-function digit DO output "designated counting value arrival"ON signal, then continues to count until reaching "setup counting value".

Specified counting value should not be greater than setup counting value Pb.08.

Section V. Parameter Function Table

5-14 MS speed function&simple PLC function: PC.00-PC.51

MS speed command of FIE1 has more abundant functions than the usual MS speed function. It could not only realize MS speed function, but also can be used as VF saparation voltage source and PID reference source. Therefore, dimension of MS speed command is a relative value.

Simple PLC function is different from FIE1 user programmable function. Simple PLC can only achieve simple combination of MS speed command, while user programmable function has more abundant and practical uses. For specifications please refer to A7 group.

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
PC.00	MS command 0	-100.0%~100.0%	0.0%	☆
PC.01	MS command 1	-100.0%~100.0%	0.0%	☆
PC.02	MS command 2	-100.0%~100.0%	0.0%	☆
PC.03	MS command 3	-100.0%~100.0%	0.0%	☆
PC.04	MS command 4	-100.0%~100.0%	0.0%	☆
PC.05	MS command 5	-100.0%~100.0%	0.0%	☆
PC.06	MS command 6	-100.0%~100.0%	0.0%	☆
PC.07	MS command 7	-100.0%~100.0%	0.0%	☆
PC.08	MS command 8	-100.0%~100.0%	0.0%	☆
PC.09	MS command 9	-100.0%~100.0%	0.0%	☆
PC.10	MS command 10	-100.0%~100.0%	0.0%	☆
PC.11	MS command 11	-100.0%~100.0%	0.0%	☆
PC.12	MS command 12	-100.0%~100.0%	0.0%	☆
PC.13	MS command 13	-100.0%~100.0%	0.0%	☆
PC.14	MS command 14	-100.0%~100.0%	0.0%	☆
PC.15	MS command 15	-100.0%~100.0%	0.0%	☆
MS	speed command can be used o	on three occasions:frequency source, VF saparation	voltage s	ource,

process PID set source.

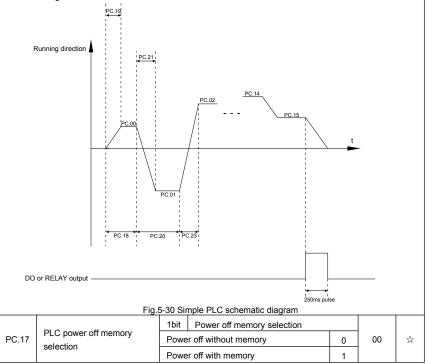
Dimension of MS speed command is a relative value ranging from -100.0% to 100.0%. When used as command source, it's the percentage of maximum frequency. When used as VF saparation voltage source, it's the percentage of motor rated voltage. When used as PID set source, dimension conversion is not needed during the process.

MS command should be selected according to the different states of multi-function digit DI terminals. For details please refer to P4 group.

		Single running stop	0		
PC.16	PLC running mode	Single running end remaining final value	1	0	☆
		Continuous circulation	2		

Simple PLC command can be used on two occasions:frequency source, VF saparation voltage source. Fig 5-30 is the schematic diagram of simple PLC that used as frequency source. Positive & negative of PC.00~PC.15 determines the running direction.

PLC has 3 running modes as frequency source (VF saparation voltage source is not provided with the 3 modes):


0: Single running stop

Upon completion of one single cycle of the inverter, it will stop automatically and will not start until running command is given again.

1: Single running end remaining final value

Upon completion of one single cycle of the inverter, the inverter will remain the running frequency and direction of last one phase. After the inverter restarted upon stop, it will run from the initial status of PLC. 2: Continuous circulation

Upon completion of one single cycle of the inverter, it will enter next cycle and not stop until stop command is given.

Section V. Parameter Function Table

10bit S	top memory selection		
Stop with	nout memory	0	
Stop with	n memory	1	

PLC power off memory refers to memorizing the PLC running stage and running frequency before power off, and continues to run from the memory stage upon next power-on. If 1bit is set to 0, PLC process would restart upon power-on.

PLC stop memory refers to the record of PLC running stage and running frequency of the time before. Next time PLC continues to run from the memory stage. If 10bit is set to 0, PLC process would restart upon power-on.

pomore	л.			
PC.18	PLC 0segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
PC.19	PLC 0segment acc./dec. time	0~3	0	☆
PC.20	PLC 1segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	$\stackrel{\wedge}{\simeq}$
PC.21	PLC 1segment acc./dec. time	0~3	0	☆
PC.22	PLC 2segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
PC.23	PLC 2segment acc./dec. time	0~3	0	☆
PC.24	PLC 3segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	$\stackrel{\wedge}{\simeq}$
PC.25	PLC 3segment acc./dec. time	0~3	0	$\stackrel{\wedge}{\simeq}$
PC.26	PLC 4segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	$\stackrel{\wedge}{\simeq}$
PC.27	PLC 4segment acc./dec. time	0~3	0	☆
PC.28	PLC 5 segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
PC.29	PLC 5segment acc./dec. time	0~3	0	☆
PC.30	PLC 6segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
PC.31	PLC 6segment acc./dec. time	0~3	0	☆
PC.32	PLC 7segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
PC.33	PLC 7segment acc./dec. time	0~3	0	☆
PC.34	PLC 8segment running time	0.0s(h) ~6553.5s(h)	0.0s(h)	$\stackrel{\wedge}{\simeq}$
PC.35	PLC 8segment acc./dec. time	0~3	0	$\stackrel{\wedge}{\simeq}$
PC.36	PLC 9segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	☆
PC.37	PLC 9segment acc./dec. time	0~3	0	☆
PC.38	PLC 10segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	$\stackrel{\wedge}{\simeq}$
PC.39	PLC 10segment acc./dec.time	0~3	0	$\stackrel{\wedge}{\simeq}$
PC.40	PLC 11segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	$\stackrel{\wedge}{\simeq}$
PC.41	PLC 11segment acc./dec. time	0~3	0	$\stackrel{\wedge}{\simeq}$
PC.42	PLC 12segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	$\stackrel{\wedge}{\simeq}$
PC.43	PLC 12segment acc./dec. time	0~3	0	☆

					☆
PC.44	PLC 13segment running time	0.0s(h) ~ 6553.5s(h)		0.0s(h)	ਿ
PC.45	PLC 13segment acc./dec. time	0~3		0	☆
PC.46	PLC 14segment running time	0.0s(h) ~ 6553.5s(h)		0.0s(h)	☆
PC.47	PLC 14segment acc./dec. time	0~3		0	☆
PC.48	PLC 15segment running time	0.0s(h) ~ 6553.5s(h)		0.0s(h)	☆
PC.49	PLC 15segment acc./dec. time	0~3	0	☆	
D0 50		S(second)	0		
PC.50	Running time unit	H(hour)	1	0	☆
		Function code PC.00 reference	0		
		AI1	1		
		AI2	2		
PC.51	MS command 0 reference	AI3(Potentiometer)	3	0	☆
10.01	mode	PULSE	4		~
		PID	PID 5		
		Preset frequency (P0.08) reference, UP/DOWN can be modified	6		

It is used to select the reference channel of MS speed 0.

Besides choosing PC.00, MS command 0 has many other options, which is convenient for switching between MS command and other set modes.

Both MS command and simple PLC used as frequency source can easily realize switching between the two frequency sources.

5-15 Communication function group: Pd.00-Pd.06

Please relef to <i>«FIET communication protocol»</i>	Please refer to	«FIE1 communication protocol»
--	-----------------	-------------------------------

Code	Description/ Keyboard Display	Setting Range			Factory Setting	Change Limit
		1bit	MODBUS			
		300B	PS	0		
		600B	PS	1		
		1200	BPS	2		
	Baud rate	2400BPS		3	6005	
		4800BPS		4		
Pd.00		9600BPS		5		☆
		19200BPS		6		
		3840	OBPS	7	-	
		57600BPS		8	1	
		11520	DOBPS	9	1	
		10bit	Profibus-DP		1	
		11520	DOBPS	0		

Section V. Parameter Function Table

		208300BPS			
			1		
		256000BPS	2		
		512000BPS			
		100 bit Reserved			
		1000 bit CANlink baud rate			
		20	0		
		50	1		
		100	2		
		125	3		
		250	4		
		500	5		
		1M	6		
		Without calibration (8-N-2)	0		
		Even parity calibration(8-E-1)			
Pd.01	Data format	Uneven parity calibration(8-O-1)	1	0	☆
		8-N-1	3		
Pd.02	Local address	1-247, 0 is broadcast address		1	☆
Pd.03	Response delay	0ms-20ms		2	☆
Pd.04	Excessive communication time	0.0(invalid), 0.1s-60.0s		0.0	☆
		1bit MODBUS			
		Non-standard MODBUS protocal	0		
		Standard MODBUS protocal	1	1	
Pd.05	Data transformat selection	10 bit Profibus-DP		30	☆
		PPO1 format	0		
		PPO2 format	1	1	
		PPO3 format			
		PPO5 format			
	Communication read	0.01A	0		
Pd.06		0.1A		0	☆

5-16 User customization function code: PE.00-PE.29

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
PE.00	User function code 0	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.01	☆

PE.01	User function code 1	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.02	☆
PE.02	User function code 2	P0.00~PP.xx,A0.00~Ax.xx, U0.xx		☆
PE.03	User function code 3	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.07	☆
PE.04	User function code 4	P0.00~PP.xx,A0.00~Ax.xx, U0.xx F		☆
PE.05	User function code 5	P0.00~PP:xx,A0.00~Ax.xx, U0.xx	P0.17	☆
PE.06	User function code 6	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.18	☆
PE.07	User function code 7	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P3.00	☆
PE.08	User function code 8	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P3.01	☆
PE.09	User function code 9	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P4.00	☆
PE.10	User function code 10	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P4.01	☆
PE.11	User function code 11	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P4.02	☆
PE.12	User function code 12	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P5.04	☆
PE.13	User function code 13	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P5.07	☆
PE.14	User function code 14	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P6.00	☆
PE.15	User function code 15	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P6.10	☆
PE.16	User function code 16	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.17	User function code 17	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.18	User function code 18	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.19	User function code 19	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.20	User function code 20	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.21	User function code 21	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.22	User function code 22	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.23	User function code 23	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.24	User function code 24	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.25	User function code 25	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.26	User function code 26	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.27	User function code 27	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.28	User function code 28	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆
PE.29	User function code 29	P0.00~PP.xx,A0.00~Ax.xx, U0.xx	P0.00	☆

This function group is the user customization function code.

Users can put the required parameters (among all FIE1 function codes) to the PE group as the user customization function group.

PE group can offer 30 user customization function codes at most.When PE displays P0.00, it means user function code is null.

In user customization function mode, display of the function codes is defined through PE.00~PE.31. Sequence is consistent with the PE function codes, skip P0.00.

5-17 Function code management: PP.00-PP.04

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
PP.00	User password	0~65535	0	☆

The password set function is used to prohibit the unauthorized person from viewing and modifying the parameters.

When the parameter is set to any non-zero number, the password protection function is enabled. If no password is needed, change the parameter value to 00000.

After the user password is set and takes effect, when entering the password setting state, if the user password is incorrect, you cannot view and modify the parameter. You can only view the operation display parameters and stop displaying parameters.

Please keep your password in mind. If you set the password mistakenly or forget the password, please contact the manufacturer.

		No function	0		
	Restore to factory default value, motor parameter not included	1			
		Clear memory	2	0	
PP.01	Parameter initialization	Restore to factory default value, motor parameter included	3		*
		Backup user current parameter	4		
		Restore user backup parameter	501]	

0: No function

1: Restore to factory default value, motor parameter not included

The inverter restores all the parameters excluding the following parameters of the factory default values:

Motor parameters, P0.22, fault record information, P7.09, P7.13, P7.14.

2: Clear memory

The inverter clears the fault records , P7.09, P7.13 and P7.14 to zero.

3: Restore to factory default value, motor parameter included.

4: Backup user current parameter

It is the backup of user current setting parameters, which is convenient for the user to restore the disordered parameters .

501:Restore user backup parameter

It is used to restore the backup of user parameters, that is, restore the backup parameters which is set through PP.01=501.

		1bit	U group display selection			
		No di	splay	0		
		Display		1		
PP.02	Parameter display attribute	10bit	A group display selection		11	*
		No display		0	1	
		Displa	ау	1		

PP.03 Personalized parameter display selection	1bit	Custom parameter display selection	n			
	No di	splay	0			
		Display		1		
		10bit	User change parameter display sel	ection	00	☆
		No display		0		
		Displa	ау	1		

The establishment of parameter display selection is basically convenient for the users viewing the different arrangement forms of function parameters according to the actual needs. Three display methods are offered as below:

Name	Discription
Function parameter mode	Sequence display inverter function parameters, respectively P0~PF, A0~AF, U0~UF.
User customization parameter mode	User customization display of specified function parameters (32 at most). The display parameters is determined through PE group.
User change parameter mode	Parameters which are different from factory default.

When existing display for PP.03, user could switch into different display mode through QUICK key. Function parameter display mode as default.

Parameter display mode	Display
Function parameter mode-FunC	-Fun[
User customization parameter mode-USEt	-USEr
User change parameter mode-UC	-UC

Display codes as below:

FIE1 series offers two groups of personalized parameter display mode:user customization function mode, user change parameter mode.

In user customization parameter mode, sign u is added to the user customization function code as default.

In user change parameter mode, sign c is added to the user customization function code as default. E.g:P1.00 is displayed as cP1.00 .

	Function codes modification	Can be modified	0	0	
PP.04	attribute	Can not be modified	1	0	¥
T 1-1	- Constitution in constant to constant and				

This function is used to prevent misoperation of the function parameters.

PP.04=0:All the function codes can be modified.

PP.04=1:All the function codes can only be viewed, but not modified.

5-18 Torque control group: A0.00-A0.08

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit		
	Speed/ torgue control mode	Speed control	0	0		
A0.00	selection	Torque control	1		*	
	A0.00 is used to calect inverter control moderanced control or terrue control					

A0.00 is used to select inverter control mode:speed control or torque control.

Multi-function digit DI terminal of FIE1 is equipped with two functions relating torque control:_{Torque} control banned(Function29), speed control/torque control switching (function 46). The two terminals should be matched with A0.00 to realize switching between speed control and torque control.

A0.00 sets the control mode when speed/torque control switching terminal is invalid. If the speed/ torque control switching terminal is valid, control mode is equivalent to the inversion of A0.00 value. When function 29 is valid, speed control mode is fixed for the inverter.

	-	Digital setup(A0.03)	0		
		Al1	1		
		Al2	2		
40.01	Torque setup source selection	Al3(Potentiometer)	3	0	
AU.U1	A0.01 in torque control mode	PULSE	4	U	*
		Commuication setup	5		
		MIN (AI1,AI2)	6		
		MAX (AI1,AI2)	7		
A0.03	Torque digital setup in torque control mode	-200.0%~200.0%		150%	☆

A0.01 is used to select torque set source. There are totally 8 kinds of torque set mode.

Torque set is a relative value, which 100% corresponds to inverter rated torque. Set range:200.0%~200.0%. Maximum torque is 2 times than the inverter rated torque.

When the torque is set by selection 1~7, 100% of communication , analog input, pulse input corresponding to A0.03.

A0.05	Torque control forward maximum frequency	0.00Hz~Maximum frequency(P0.10)	50.00Hz	\$
A0.06	Torque control reverse maximum frequency	0.00Hz~Maximum frequency(P0.10)	50.00Hz	\$

A0.05, A0.06 are used to set forward or reverse maximum running frequency in torque control mode.

In inverter toque control mode, if load torque is less than motor output toque, the motor revolving speed would speed up. In case of galloping or other accidents of mechanical system , motor maximum revolving speed must be limited.

A0.07	Torque control acc. time	0.00s~65000s	0.00s	☆
A0.08	Torque control dec. time	0.00s~65000s	0.00s	☆

In torque control mode , rate of speed change of motor and load is decided by the difference between motor output toque and load torque. Therefore, motor speed may change fast, causing noise or excessive mechanical stress problems. By setting the torque control acc./dec. time, can make the motor speed changes smoothly.

A0.07 and A0.08 should be set to 0.00s in situations where torque rapid response is needed.

E.g:Two motors drive the same load, to make sure of load uniform distribution , one is set as host inverter(speed control mode) and another is the slave one(torque control mode). Actual output torque of the host inverter is the torque command of the slave, and slave torque is required to quickly follow the host torque, then torque control acc./dec. time is set to 0.00s for the slave inverter.

5-19 Virtual IO: A1.00-A1.21

Code	Description/	Setting Range	Factory	Change
------	--------------	---------------	---------	--------

	Keyboard Display		Setting	Limit
A1.00	Virtual VDI1 function selection	0~59	0	*
A1.01	Virtual VDI2 function selection	0~59	0	*
A1.02	Virtual VDI3 function selection	0~59	0	*
A1.03	Virtual VDI4 function selection	0~59	0	*
A1.04	Virtual VDI5 function selection	0~59	0	*
		e equal to DI terminals on control board. VDI1		used
as multi	-function digital input terminals,	for details please refer to description of P4.00)~P4.09 .	
		State of virtual VDOx decides whether VDI is effective	0	
		Function code A1.06 decide whether VDI is effective	1	
		10bit Virtual VDI2		
		State of virtual VDOx decides whether VDI is effective	0	
		Function code A1.06 decides whether VDI is effective	1	
		100 bit Virtual VDI3		
A1.05	Virtual VD1 terminal valid state set mode	State of virtual VDOx decides whether 0 VDI is effective 0	00000	*
		Function code A1.06 decides whether VDI is effective		
		1000 bit Virtual VDI4		
		State of virtual VDOx decides whether VDI is effective	0	
		Function code A1.06 decides whether VDI is effective	1	
		10000 bit Virtual VDI5		
		State of virtual VDOx decides whether VDI is effective	0	
		Function code A1.06 decides whether VDI is effective	1	
		1bit Virtual VDI1		
A1.06	Virtual VD1 terminal state		0 00000	*
		Valid		

Section V. Parameter Function Table

Beene	on v. Parameter Function Table		
101	vit Virtual VDI2		
Inv	alid	0	
Va	lid	1	
100	bit Virtual VDI3		
Inv	alid	0	
Va	lid	1	
100 bit	Virtual VDI4		
Inv	alid	0	
Va	lid	1	
100 ⁰ bit	Virtual VDI5		
Inv	ralid	0	
Va	lid	1	

State of virtual VDI terminal can be set through 2 setting methods, which is different from common digit input terminals, and select through A1.05.

When choosing the corresponding VDO state as the decision of VDI state , valid state of VDI is depending on VDO output as valid or not. VDIx only binding VDOx($x : 1 \sim 5$).

Binary bits of function code A1.06 decide vitual input terminal states respectively.

The following example illustrates the method of using virtual VDI.

E.g1:When choosing VDO state deciding VDI state, to complete "Al1 input exceeding limit, inverter fault alarm and stop":

Set VDI1 to " user-defined fault 1"(A1.00=44);

Set VDO1 (A1.05=xxx0) to decide VDI1 terminal valid state;

Set VDO1 output function to "Al1 excessive input" (A1.11=31);

When Al1 exceeding the upper / lower limit , VDO1 output ON signal, VDI1 input terminal state is valid, VDI1 receives " user-defined fault 1", and inverter fault alarm and stop , fault No. 27= E.USt1.

E.g2:When choosing function code A1.06 deciding VDI state, to complete " Auto into running state after power-on ":

Set VDI1 to "Forward command FWD"(A1.00=1);

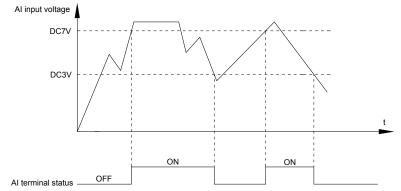
Set function code (A1.05=xxx1) to decide VDI1 terminal valid state;

Set VDI1 termianl to valid state(A1.06=xxx1);

Set command source to "Terminal control" (P0.02=1);

Set startup protection selection to invalid state.(P8.18=0);

After inverter power-on and the initialization, VDI1 is detected as valid, the terminal corresponding to forward running, which is equivalent to inverter receiving a forward running command, and then start forward running.


A1.07	AI1 as DI function selection	0~59		0	*
A1.08	AI2 as DI function selection	0~59		0	*
A1.09	AI3 as DI function selection	0~59		0	*
A1.10	Al as DI valid mode selection	1bit	Al1	000	*

High level valid	0	
Low level valid	1	
100bit Al2	_	
High level valid	0	
Low level valid	1	
1000 bit Al3(Potentiometer)		
High level valid	0	
Low level valid	1	

Al is used as DI for this function group. Al input voltage is greater than 7V, corresponding Al terminal state is high level. Al input voltage is less than 3V, corresponding Al terminal state is low level. 3V~7V for hysteresis loop.

Whether AI (as DI) high level valid or low level valid is determined through function code A1.10. For AI(as DI) function settings, they are same with common DI settings, for details please refer to P4 group .

Fig. 5-31 takes AI input voltage as an example, explains the relationship between AI input voltage and corresponding DI state:

Fig.5-31 AI termina	l valid state	schematic diagram

		Short circuit with physics DIx internals	0		
A1.11	Virtual VDO1 output function	See P5 group for physics DO output selection	1~40	0	☆
	Short circuit with physics DIx internals	0			
A1.12	Virtual VDO2 output function	See P5 group for physics DO output selection	1~40	0	☆
	Virtual VDO3 output function	Short circuit with physics DIx internals	0	0	
A1.13		See P5 group for physics DO output selection	1~40		☆
	Virtual VDO4 output function	Short circuit with physics DIx internals	0		
A1.14		See P5 group for physics DO output selection	1~40	0	\$

Section V. Parameter Function Table

		Short circuit with physics DIx internals	0		
A1.15 Virtual VDO5 output function	See P5 group for physics DO output selection	1~40	0	\$	
A1.16	VDO1 output delay time	0.0s~3600.0s	0.0s~3600.0s		
A1.17	VDO2 output delay time	0.0s~3600.0s		0.0s	☆
A1.18	VDO3 output delay time	0.0s~3600.0s		0.0s	☆
A1.19	VDO4 output delay time	0.0s~3600.0s		0.0s	☆
A1.20	VDO5 output delay time	0.0s~3600.0s		0.0s	☆
	1bit VDO1				
		Positive logic	0		
		Negative logic	1		
		10bit VDO2			
		Positive logic	0		
		Negative logic	1		
		100bit VDO3			
A1.21	VDO output terminal valid	Positive logic	0	00000	☆
A1.21	state selection	Negative logic	1	00000	м
		1000 bit VDO4			
		Positive logic	0		
		Negative logic	1		
		10000 bit VDO5			
		Positive logic	0		
		Negative logic	1		

Virtual digit output function, which is similar with control board DO output function, can be used to cooperate with virtual digit input VDIx, to realize some simple logic control.

When virtual VDOx output function selecting 0, VDO1~VDO5 output states is determined by input states of DI1~DI5 on the keyboard. VDOx and DIx one-to-one corresponding.

When virtual VDOx output function selecting non-zero digits, VDOx function setting and use method are same with P5 group DO output relevant parameters, for details please refer to P5 group.

Similarly, VDOx output valid state can choose positive or negative logic, and set through A1.21.

For VDOx use reference , please refer to applications for VDIx use .

5-20 The second motor control:A2.00-A2.65

FIE1 can switch operation between 4 motors. The 4 motors could set motor nameplate parameters, tune motor parameters, use V/F control or vector control, set encoder relating parameters and set V/F control or vector control relating parameters respectively.

Groups of A2, A3, A4 are corresponding to motor2, motor3, motor4 respectively. And the layout of the 3 groups of function codes are completely consistent .

For details please refer to relating parameters of motor1.

	Description/			Factory	Change
Code	Keyboard Display	Setting Range		Setting	Limit
		General asynchronous motor	0		
A2.00	Motor type selection	Variable frequency asynchronous motor	1	0	*
		Permanent magnet synchronous motor	2		
A2.01	Rated power	0.1kW~1000.0kW		-	*
A2.02	Rated voltage	1V~2000V		-	*
A2.03	Rated current	0.01A~655.35A(Inverter power <=55kW) 0.1A~6553.5A(Inverter power >55kW)		-	*
A2.04	Rated frequency	0.01Hz~maximum frequency		-	*
A2.05	Rated revolving speed	1rpm~65535rpm		-	*
A2.06	Asynchronous motor stator resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)		-	*
A2.07	Asynchronous motor rotor resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)		-	*
A2.08	Asynchronous motor leakage inductance		0.01mH~655.35mH(Inverter power <=55kW) 0.001mH~65.535mH(Inverter power >55kW)		
A2.09	Asynchronous motor mutual inductance	0.1mH~6553.5mH(Inverter power <=55kW 0.01mH~655.35mH(Inverter power >55kW	-	*	
A2.10	Asynchronous motor no load current	0.01A~A2.03(Inverter power <=55kW) 0.1A~A2.03(Inverter power >55kW)	-	*	
A2.16	Synchronous motor stator resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)	-	*	
A2.17	Synchronous motor D-axis inductance	0.01mH~655.35mH(Inverter power <=55k\ 0.001mH~65.535mH(Inverter power >55k\	,	-	*
A2.18	Synchronous motor Q-axis inductance	0.01mH~655.35mH(Inverter power <=55k) 0.001mH~65.535mH(Inverter power >55k)		-	*
A2.19	Synchronous motor inductance resistance unit	0~12		0	*
A2.20	Synchronous motor back electromotive force coeff	0.1V~6553.5V		0.1V	*
A2.21	Synchronous motor output phase lack detection time	0~60000		0	*
A2.27	Encoder pulses number	1~65535		2500	*
		ABZ incremental encoder	0		
		UVW incremental encoder	1		
A2.28	Encoder type	Rotary transformer	2	0	*
		Sine/cosine encoder	3		
		UVW encoder	4		
A2.29	Speed feedback PG selection	Local PG	0	0	*

Section V. Parameter Function Table

		Expansion PG			
		PULSE pulse input(DI5)	1		
			2		
A2.30	ABZ incremental encoder AB phase	Forward	1	0	*
A2.31		Reserve 0.0°~359.9°	0	0	*
A2.31	Encoder installation angle	Forward	0	0	*
A2.32	UVW phase sequence	Reverse	1	0	*
A2.33	UVW encoder offset angle	0.0°~359.9°		0.00	*
A2.34	Rotary transformer pole pairs	1~65535		1	*
A2.34		1~65535		4	*
A2.35	UVW pole-pairs		0.0s	4	^
A2.36	PG dropped inspection time	No action 0.1s~10.0s	0.0s	0.0s	*
		No operation	0.15		
		Asynchronous static tuning	1		
A2.37	Tuning selection	Asynchronous complete tuning	2	- ₀	*
742.07		Synchronous static tuning	11		^
		Synchronous complete tuning	12		
A2.38	Speed loop proportional gain 1	1~100		30	☆
A2.39	Speed loop integration time1	0.01s~10.00s	0.50s	☆	
A2.40	Switching frequency1	0.00~A2.43	5.00Hz	☆	
A2.41	Speed loop proportional gain 2	0~100		20	☆
A2.42	Speed loop integration time 2	0.01s~10.00s		1.00s	\$
A2.43	Switching frequency 2	A2.40~maximum output frequency		10.00Hz	\$
A2.44	Vector control slip gain	50%~200%		150%	☆
A2.45	Speed-loop filtering time	0.000s~0.100s		0.000s	☆
A2.46	Vector control over- excitation gain	0~200		64	☆
		A2.48 setup	0		
		Al1	1		
		AI2	2	- 0	
AD 47	Torque upper limit source in	Al3(Potentiometer)	3		
A2.47	speed control mode	PULSE setup	4		☆
		Communication setup	5		
		MIN(AI1,AI2)	6		
		MAX(AI1,AI2)	7		

Torque upper limit digital setup in speed control mode	0.0%	~200.0%		150.0%	☆
Excitation regulation proportional gain	0~60	000		2000	☆
Excitation regulation integration gain	0~60	000		1300	☆
Torque requlation proportional gain	0~60	000		2000	☆
Torque regulation integration gain	0~60	000		1300	☆
	1bit	Integration separation			
Speed loop integration	Invali	d	0	0	☆
	Valid		1		
	No w	eak magnatic	0		
Synchronous motor field	Direc	t calculation mode	1	1	☆
weakening mode	Auto	regulation mode	2		
Synchronous motor field weakening depth	50%~500%		100%	☆	
Maximum field weakening current	1%~300%		50%	☆	
Field weakening auto regulation gain	10%~500%		100%	☆	
Field weakening integration multiples	2~10			2	☆
	Spee	d sensorless vector control(SVC)	0		
Motor2 control mode	Spee	d sensor vector control(FVC)	1	0	*
	V/F c	ontrol	2		
	Same	e with the first motor	0		
	Acce	eration time1	1		
Motor 2 acc./dec. time selection	Acce	eration time 2	2	0	☆
	Acce	eration time 3	3		
	Acce	eration time 4	4		
		0.0%		☆	
	0.1%	~30.0%		_	~
Motor 2 oscillation suppression gain	0~10	0		-	☆
	setup in speed control mode Excitation regulation proportional gain Excitation regulation integration gain Torque regulation integration gain Torque regulation integration gain Speed loop integration attribute Synchronous motor field weakening mode Synchronous motor field weakening depth Maximum field weakening current Field weakening auto regulation gain Field weakening integration multiples Motor 2 control mode selection	setup in speed control mode0.0% modeExcitation regulation proportional gain0-60Excitation regulation integration gain0-60Torque regulation integration gain0-60Torque regulation integration gain0-60Torque regulation integration gain0-60Speed loop integration attribute1bit Invali Valid Valid Maximum field weakening currentSynchronous motor field weakening depth0Maximum field weakening current10%-2Field weakening auto regulation gain10%-2Field weakening integration multiples2-10Motor 2 control modeSpeed Accel 	setup in speed control mode 0.0%~200.0% Excitation regulation proportional gain 0~6∪∪ Excitation regulation integration gain 0~6∪∪∪ Torque regulation proportional gain 0~6∪∪∪ Torque regulation integration gain 0~6∪∪∪ Torque regulation integration gain 0~6∪∪∪ Torque regulation integration gain 0~6∪∪∪ Speed loop integration attribute 0~6∪∪∪ Synchronous motor field weakening mode 11v it it integration mode Synchronous motor field weakening depth No w=x magnatic Maximum field weakening depth 11v~J∪√ Field weakening integration mode 11v~J∪√ Field weakening integration multiples 2~1∪ Field weakening integration multiples Speed sensor vector control(FVC) Motor 2 control mode Speed sensor vector control(FVC) V/F control Same with the first motor Acceleration time 1 Acceleration time 2 Motor 2 acc./dec. time site Acceleration time 4 Motor 2 coscillation 0.1%~30.% Motor 2 coscillation 0~10∪	setup in speed control mode 0.0%-200.0% Excitation regulation proportional gain 0-600000000000000000000000000000000000	setup in speed control mode 0.%~200.% 150.% Excitation regulation proportional gain 0-6000 2000 Excitation regulation integration gain 0-6000 3000 Torque regulation proportional gain 0-6000 3000 Torque regulation integration gain 0-6000 3000 Torque regulation integration gain 0-6000 3000 Torque regulation integration gain 0-6000 3000 Speed loop integration attribute 1bit Integration separation 0 Synchronous motor field weakening mode 1 1 1 Synchronous motor field weakening mode 1 1 1 Synchronous motor field weakening and 1%-300% 1 00% Synchronous motor field weakening atto regulation gain 1%-300% 1 0 Field weakening atto regulation gain 2-1 2 2 Motor 2 control mode 1 2 2 Motor 2 acc./dec. time selection Same with the first motor 0 2 Motor 2 torque hoist 0 3 2 Motor 2 oscillation 0-10~-50.0% 1 2 Motor 2 torque hoist 0 3 2

5-21 The third motor control: A3.00-A3.65

Section V. Parameter Func	tion Table
---------------------------	------------

	Description/			Factory	Change
Code	Keyboard Display	Setting Range		Setting	Limit
		General asynchronous motor	0		
A3.00	Motor type selection	Variable frequency asynchronous motor	1	0	*
		Permanent magnet synchronous motor	2		
A3.01	Rated power	0.1kW~1000.0kW		-	*
A3.02	Rated voltage	1V~2000V		-	*
A3.03	Rated current	0.01A~655.35A(Inverter power <=55kW) 0.1A~6553.5A(Inverter power >55kW)		-	*
A3.04	Rated frequency	0.01Hz~maximum frequency		-	*
A3.05	Rated revolving speed	1rpm~65535rpm		-	*
A3.06	Asynchronous motor stator resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)		-	*
A3.07	Asynchronous motor rotor resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)		-	*
A3.08	Asynchronous motor leakage inductance	0.01mH~655.35mH(Inverter power <=55k\ 0.001mH~65.535mH(Inverter power >55k\	-	*	
A3.09	Asynchronous motor mutual inductance	0.1mH~6553.5mH(Inverter power <=55kW 0.01mH~655.35mH(Inverter power >55kW	-	*	
A3.10	Asynchronous motor no load current	0.01A~A3.03(Inverter power <=55kW) 0.1A~A3.03(Inverter power >55kW)	-	*	
A3.16	Synchronous motor stator resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)	-	*	
A3.17	Synchronous motor D-axis inductance	0.01mH~655.35mH(Inverter power <=55k\ 0.001mH~65.535mH(Inverter power >55k\	,	-	*
A3.18	Synchronous motor Q-axis inductance	0.01mH~655.35mH(Inverter power <=55k) 0.001mH~65.535mH(Inverter power >55k)	,	-	*
A3.19	Synchronous motor inductance resistance unit	0~12		0	*
A3.20	Synchronous motor back electromotive force coeff	0.1V~6553.5V		0.1V	*
A3.21	Synchronous motor output phase lack detection time	0~60000		0	*
A3.27	Encoder pulses number	1~65535		2500	*
		ABZ incremental encoder	0		
		UVW incremental encoder	1		
A3.28	Encoder type	Rotary transformer	2	0	*
		Sine/cosine encoder	3		
		UVW encoder	4		
A3.29	Speed feedback PG selection	Local PG	0	0	*

		Expansion PG	1		
		PULSE pulse input(DI5)	2		
	ABZ incremental encoder	Forward	0		
A3.30	AB phase	Reserve	1	0	*
A3.31	Encoder installation angle	0.0°~359.9°	0	0	*
		Forward	0		
A3.32	UVW phase sequence	Reverse	1	0	*
A3.33	UVW encoder offset angle	0.0°~359.9°		0.00	*
A3.34	Rotary transformer pole pairs	1~65535		1	*
A3.35	UVW pole pairs	1~65535		4	*
A3.36	PC drapped inspection time	No action	0.0s	0.0s	
A3.30	PG dropped inspection time	0.1s~10.0s	0.1s	0.05	*
		No operation	0		
		Asynchronous static tuning	1		
A3.37	Tuning selection	Asynchronous complete tuning	2	0	*
		Synchronous static tuning	11	_	
		Synchronous complete tuning	12		
A3.38	Speed loop proportional gain1	1~100		30	☆
A3.39	Speed loop integration time1	0.01s~10.00s		0.50s	☆
A3.40	Switching frequency1	0.00~A3.43		5.00Hz	☆
A3.41	Speed loop proportional gain 2	0~100		20	☆
A3.42	Speed loop integration time 2	0.01s~10.00s		1.00s	☆
A3.43	Switching frequency 2	A3.40~maximum output frequency		10.00Hz	☆
A3.44	Vector control slip gain	50%~200%		150%	☆
A3.45	Speed-loop filtering time	0.000s~0.100s		0.000s	☆
A3.46	Vector control over-excitation gain	l over-excitation 0~200		64	☆
		A3.48 setup	0		
		Al1	1		
		Al2	2		
A3.47	Torque upper limit source in	Al3(Potentiometer)	3		,
AJ.41	speed control mode	PULSE setup	4	0	☆
		Communication setup	5		
		MIN(AI1,AI2)	6		
		MAX(AI1,AI2)	7		

A3.48	Torque upper limit digital setup in speed control mode	0.0%~200.0%		150.0%	☆
A3.51	Excitation regulation proportional gain	0~60000		2000	☆
A3.52	Excitation regulation integration gain	0~60000		1300	☆
A3.53	Torque requlation proportional gain	0~60000		2000	☆
A3.54	Torque requlation integration gain	0~60000		1300	☆
		1bit Integration separation			
A3.55	Speed loop integration	Invalid	0	0	☆
attribute	Valid	1			
		No weak magnatic	0	1	
A3.56	Synchronous motor field	Direct calculation mode	1		☆
weakening mode	Auto regulation mode	2			
A3.57	Synchronous motor field weakening depth	50%~500%		100%	☆
A3.58	Maximum field weakening current	1%~300%	50%	☆	
A3.59	Field weakening auto regulation gain	10%~500%	100%	☆	
A3.60	Field weakening integration multiples	2~10		2	☆
		Speed sensorless vector control(SVC)	0		
A3.61	Motor 3 control mode	Speed sensor vector control(FVC)	1	0	*
		V/F control	2		
		Same with the first motor	0		
		Acceleration time1	1		
A3.62	Motor 3 acc./dec. time selection	Acceleration time 2	2	0	☆
	001004011	Acceleration time 3	3		
		Acceleration time 4	4		
40.00	Mater O terms haist	Auto torque hoist	0.0%		
A3.63 Motor 3 torque hoist 0.1%~30.0%		0.1%~30.0%		-	☆
A3.65	Motor 3 oscillation suppression gain	0~100		-	☆

5-22 The fourth motor control: A4.00-A4.65

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limit
		General asynchronous motor	0		
A4.00	Motor type selection	Variable frequency asynchronous motor	1	0	*
		Permanent magnet synchronous motor	2	1	
A4.01	Rated power	0.1kW~1000.0kW		-	*
A4.02	Rated voltage	1V~2000V		-	*
A4.03	Rated current	0.01A~655.35A(Inverter power <=55kW) 0.1A~6553.5A(Inverter power >55kW)		-	*
A4.04	Rated frequency	0.01Hz~maximum frequency		-	*
A4.05	Rated revolving speed	1rpm~65535rpm		-	*
A4.06	Asynchronous motor stator resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)		-	*
A4.07	Asynchronous motor rotor resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)		-	*
A4.08	Asynchronous motor leakage inductance	0.01mH~655.35mH(Inverter power <=55k\ 0.001mH~65.535mH(Inverter power >55k\	-	*	
A4.09	Asynchronous motor mutual inductance	0.1mH~6553.5mH(Inverter power <=55kW 0.01mH~655.35mH(Inverter power >55kW	-	*	
A4.10	Asynchronous motor no load current	0.01A~A2.03(Inverter power <=55kW) 0.1A~A2.03(Inverter power >55kW)	-	*	
A4.16	Synchronous motor stator resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)	-	*	
A4.17	Synchronous motor D-axis inductance	0.01mH~655.35mH(Inverter power <=55k\ 0.001mH~65.535mH(Inverter power >55k\		-	*
A4.18	Synchronous motor Q-axis inductance	0.01mH~655.35mH(Inverter power <=55k\ 0.001mH~65.535mH(Inverter power >55k\	,	-	*
A4.19	Synchronous motor inductance resistance unit	0~12		0	*
A4.20	Synchronous motor back electromotive force coeff	0.1V~6553.5V		0.1V	*
A4.21	Synchronous motor output phase lack detection time	0~60000		0	*
A4.27	Encoder pulses number	1~65535		2500	*
		ABZ incremental encoder	0		
		UVW incremental encoder	1		
A4.28	Encoder type	Rotary transformer	2	0	*
		Sine/cosine encoder	3		
		UVW encoder	4		
A4.29	Speed feedback PG selection	Local PG	0	0	*

Section V. Parameter Function Table

		Expansion PG	1		
		PULSE pulse input(DI5)	2		
	ABZ incremental encoder	Forward	0		
A4.30	AB phase	Reserve	1	0	*
A4.31	Encoder installation angle	0.0°~359.9°	0	0	*
		Forward	0		
A4.32	UVW phase sequence	Reverse	1	0	*
A4.33	UVW encoder offset angle	0.0°~359.9°		0.00	*
A4.34	Rotary transformer pole pairs	1~65535		1	*
A4.35	UVW pole-pairs	1~65535		4	*
		No action	0.0s		
A4.36	PG dropped inspection time	0.1s~10.0s	0.1s	0.0s	*
		No operation	0		
		Asynchronous static tuning	1		
A4.37	Tuning selection	Asynchronous complete tuning	2	0	*
		Synchronous static tuning	11		
		Synchronous complete tuning	12		
A4.38	Speed loop proportional gain 1	1~100		30	☆
A4.39	Speed loop integration time1	0.01s~10.00s		0.50s	☆
A4.40	Switching frequency1	0.00~A2.43		5.00Hz	☆
A4.41	Speed loop proportional gain 2	0~100		20	☆
A4.42	Speed loop integration time 2	0.01s~10.00s		1.00s	샀
A4.43	Switching frequency 2	A4.40~maximum output frequency		10.00Hz	☆
A4.44	Vector control slip gain	50%~200%		150%	☆
A4.45	Speed-loop filtering time	0.000s~0.100s		0.000s	☆
A4.46	Vector control over-excitation gain	0~200		64	☆
		A4.48 setup	0		
		Al1	1		
		Al2	2		
A4.47	Torque upper limit source in	Al3(Potentiometer)	3		\$
A4.47	speed control mode	PULSE setup	4	0	м
		Communication setup	5		
		MIN(AI1,AI2)	6		
		MAX(AI1,AI2)	7		

A4.48	Torque upper limit digital setup in speed control mode	0.0%~200.0%	0.0%~200.0%		
A4.51	Excitation regulation proportional gain	0~20000		2000	☆
A4.52	Excitation regulation integration gain	0~20000		1300	☆
A4.53	Torque requlation proportional gain	0~20000		2000	☆
A4.54	Torque requlation integration gain	0~20000		1300	☆
		1bit Integration separation			
A4.55	Speed loop integration attribute	Invalid	0	0	☆
	attribute	Valid	1		
		No weak magnetic	0		
A4.56	Synchronous motor field	Direct calculation mode	1	1	☆
	weakening mode	Auto regulation mode	2		
A4.57	Synchronous motor field weakening depth	50%~500%		100%	☆
A4.58	Maximum field weakening current	1%~300%		50%	☆
A4.59	Field weakening auto regulation gain	10%~500%		100%	☆
A4.60	Field weakening integration multiples	2~10		2	☆
		Speed sensorless vector control(SVC)	0		
A4.61	Motor 4 control mode	Speed sensor vector control(FVC)	1	0	*
		V/F control	2		
		Same with the first motor	0		
		Acceleration time1	1		
A4.62	Motor 4 acc./dec. time selection	Acceleration time 2	2	0	☆
	SCICCUUI	Acceleration time 3	3		
		Acceleration time 4	4		
A4 00		Auto torque hoist	0.0%		
A4.63	Motor 4 torque hoist	0.1%~30.0%		-	\$
A4.65	Motor 4 oscillation suppression gain	0~100		-	☆

5-23 Control optimization group:A5.00-A5.09

Section V. Parameter Function Table

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
A5.00	DPWM switching frequency upper limit	0.00Hz~15.00Hz	12.00Hz	☆

A5.00 is only valid for VF control mode. In asynchronous motor VF running mode, square wave dertermines the continuous modulation mode. Wave value < A5.00:7-stage continuous modulation mode. Wave value > A5.00:5-stage continuous modulation mode.

In 7-stage continuous modulation mode, inverter switch loss is relatively big, but current ripple is small. In 5-stage continuous modulation mode, inverter switch loss is relatively small, but current ripple is big. High frequency may lead to motor operation instability, generally there is no need of modification.

For VF operation instability please refer to P3.11. For inverter loss and temperature rise please refer to P0.15.

45.04	DIA/AA waa ah da Kara waa da	Asynchronous modulation	0	
A5.01	PWM modulation mode	Synchronous modulation	1	**

This parameter is only valid for VF control mode. Asynchronous modulation refers to carrier frequency that linear changes with output frequency, and ensure that the ratio of them (carrier ratio) remains the same. Generally high output frequency is benefit for output voltage quality.

Generally, synchronous modulation is not needed at low frequencies (below 100Hz), because the ratio of carrier frequency and output frequency is relatively high, asynchronous modulation advantage is more obvious.

When running frequency is greater than 85Hz, synchronous modulation is valid. And fixed as asynchronous modulation mode when below this frequency.

		No compensation	0			
A5.02	Dead-zone compensation mode selection	Compensation mode 1	1	1	☆	
		Compensation mode 2	2			

Generally speaking , A5.02 needs not to be modified. Only when the output voltage waveform quality has special requirements or motor appears abnormal phenomenon would users switch the compensation mode.

Compensation mode 2 is suggested in large power applications.

45.00	Devidence DM/Addevide	Random PWM invalid	0			
A5.03	Random PWM depth	PWM carrier frequency random depth	1~10	0	12	

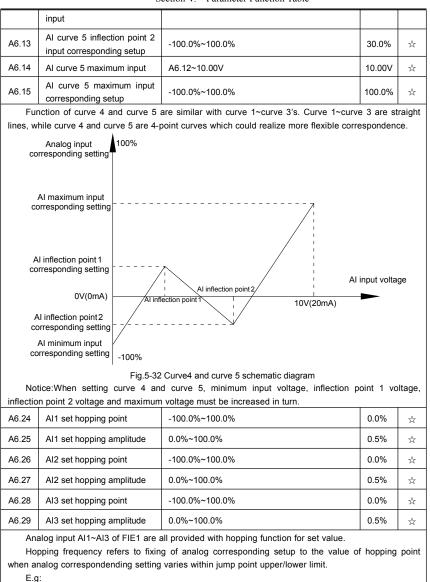
Set the random PWM, monotonous and harsh electromagnetic noise can be changed to the heterogeneous and soft, the external electromagnetic interference can be effectively reduced. 0 indicates that the PWM is invalid. Different random PWM depth represents different regulation effect.

45.04	Denid ennert limiting en ekte	Invalid	0		
A5.04	Rapid current-limiting enable	Valid	1	I	¥

Enable the rapid current-limiting function so as to minimize inverter overcurrent protection fault and make the inverter work normally.

If the inverter long time continuous staying in rapid current-limiting state, it may occur overheating fault, which is not allowed during operation. Fault alarm of long time rapid current-limiting is 40= E.CbC, which refers to inverter overload and necessary stop.

A5.05	Current detection compensation	0~100	5	☆
It is	used to set inverter current de	tection compensation. Excessive setting may lead	to decrea	ase of


Section V. Parameter Function Table

control performance. Generally do not need to be modified.									
A5.06	Under-voltage point setup	60.0%~140.0%		100.0%	☆				
A5.06 is used to set value of inverter under-voltage fault 9= E.LU. Different voltage level of 100.0% corresponds to different voltage point, respectively: Single phase 220V or three-phase 220V:220V Three-phase 380V:350V Three phase 480V:450V Three-phase 690V:650V									
		No optimization	0						
A5.07	SVC optimization mode selection	Optimization mode 1	1	1	☆				
		Optimization mode 2	2						
It is 2: Optin	nization mode 1 s used when there is high torque nization mode 2 s used when there is high speed	e control linearity requirements.							
A5.08	Dead zone time adjustment	100%~200%		150%	☆				
This parameter is set according to 1140V voltage level. By adjusting the value can improve the voltage effective use rate. Users are not suggested to modify.									
A5.09	Overvoltage point setup	200.0V~2500.0V		810.0V	☆				
A5.09 is overvoltage point set through software, which is not related to hardware overvoltage point.									

5-24 Al curve setup: A6.00-A6.29

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
A6.00	Al curve 4 minimum input	-10.00V~A6.02	0.00V	☆
A6.01	AI curve 4 minimum input corresponding setup	-100.0%~100.0%	0.0%	☆
A6.02	Al curve 4 inflection point 1 input	A6.00~A6.04	3.00V	☆
A6.03	Al curve 4 inflection point 1 input corresponding setup	-100.0%~100.0%	30.0%	☆
A6.04	Al curve 4 inflection point 2 input	A6.02~A6.06	6.00V	☆
A6.05	AI curve 4 inflection point 2 input corresponding setup	-100.0%~100.0%	60.0%	☆
A6.06	Al curve 4 maximum input	A6.06~10.00V	10.00V	☆
A6.07	AI curve 4 maximum input corresponding setup	-100.0%~100.0%	100.0%	☆
A6.08	Al curve 4 minimum input	-10.00V~A6.10	-10.00V	☆
A6.09	AI curve 5 minimum input corresponding setup	-100.0%~100.0%	-100.0%	☆
A6.10	Al curve 5 inflection point 1 input	A6.08~A6.12	-3.00V	☆
A6.11	AI curve 5 inflection point 1 input corresponding setup	-100.0%~100.0%	-30.0%	☆
A6.12	Al curve 5 inflection point 2	A6.10~A6.14	3.00V	☆

Section V. Parameter Function Table

Voltage of analog input AI1 is in 5.00V fluctuation, which range is 4.90V~5.10V. Minimum input 0.00V corresponding to 0.0%, while maximum input 10.00V corresponding to 100.%.The corresponding setting of AI1 fluctuates between 49.0%~51.0%.

Set A5.16 to 50.0% and A5.17 to 1.0%, after hopping function processing, Al1 is fixed as 50.0%. In this way, Al1 is converted into a stable input, and fluctuation is eliminated.

5-25 User programmable card parameters: A7.00-A7.09

Code	Description/ Keyboard Display		Setting Range			Change Limit
A7.00	User programmable function	Invali	d	0	0	*
A7.00	selection	Valid 1		0	*	
		Invert	er control	0		
		User	programmable card control	1		
		1bit	FMP(FM as pulse output)			
	Control board output terminal	10bit	Relay(T/A1-T/B1-T/C1)			
A7.01	control mode selection	100 bit	DO1		-	*
		1000 bit 10000	FMR(FM as switch output)			
			AO1			
A7.02	Programmable card expansion Al3x function configuration		《User programmable control card 》 ementary description	for	-	*
A7.03	FMP output	0.0%	0.0%-100.0%		0.0%	☆
A7.04	AO1 output	0.0%	0.0%-100.0%		0.0%	☆
	Switch output	1bit	FMR			
A7.05		Relay 1		000	☆	
			DO			
A7.06	Programmable card frequency setup	0.0%	100.0%		0.0%	☆
A7.07	Programmable card torque setup	-200.	0%-200.0%		0.0%	☆
		No co	ommand	0		
		Forwa	ard command	1		
		Reve	rse command	2	0	
A7.08	Programmable card	Forwa	ard jog	3		☆
A7.00	command setup	Reve	rse jog	4		м
		Free stop 5		5		
		Dece	lerate to stop	6		
		Fault	reset	7		
A7.09	Programmable card fault	No fa	ult	0	0	☆
AI.09	setup	Fault	code	ult code 80-89		M

5-26 Extended function group: A9.00-A9.09

Code	Description/	Setting Denne	Factory	Change
Code	Keyboard Display	Setting Range	Setting	Limit

Section V. Parameter Function Table

		General Injection molding machine servo	0		
		Stone block sawing	2		
A9.00	Load type	Log-core veneer lathe	3	0	•
		Kowtow machine	4		
		Sewing machine	5		
		Extruding machine	6		

Parameters would be automatically configured after choosing the load type. For specifications please consult our company.

A9 user parameters are load function definition parameters.

A9.01	User parameter 0	0~65535	0	☆
A9.02	User parameter 1	0~65535	0	☆
A9.03	User parameter 2	0~65535	0	☆
A9.04	User parameter 3	0~65535	0	☆
A9.05	User parameter 4	0~65535	0	☆
A9.06	User parameter 5	0~65535	0	☆
A9.07	User parameter 6	0~65535	0	☆
A9.08	User parameter 7	0~65535	0	☆
A9.09	User parameter 8	0~65535	0	☆

5-27 AIAO correction: AC.00-AC.19

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
AC.00	Al1 measured voltage 1	0.500V~4.000V	Factory calibration	☆
AC.01	Al1 display voltage 1	0.500V~4.000V	Factory calibration	☆
AC.02	Al1 measured voltage 2	6.000V~9.999V	Factory calibration	☆
AC.03	Al1 display voltage 2	6.000V~9.999V	Factory calibration	☆
AC.04	Al2 measured voltage 1	0.500V~4.000V	Factory calibration	☆
AC.05	Al2 display voltage 1	0.500V~4.000V	Factory calibration	☆
AC.06	Al2 measured voltage 2	6.000V~9.999V	Factory calibration	☆
AC.07	Al2 display voltage 2	6.000V~9.999V	Factory calibration	☆
AC.08	Al3 measured voltage 1	-9.999V~10.000V	Factory calibration	☆

AC.09	Al3 display voltage 1	-9.999V~10.000V	Factory calibration	☆
AC.10	Al3 measured voltage 2	-9.999V~10.000V	Factory calibration	☆
AC.11	Al3 display voltage 2	-9.999V~10.000V	Factory calibration	☆

This group of function codes are used for calibration of analog input AI , which could eliminate AI input bias and gain influence. Generally , there is no need of calibration in application, for it has been calibrated in factory. When restoring the factory value, the parameter would be restored to the default value of factory calibration.

Measured voltage refers to the actual voltage that has been measured through measuring instrument such as multimeter. Display voltage refers to the display value that has been sampled by the inverter. See U0 group (U0.21, U0.22, U0.23) display.

During calibration, put the multimeter measurement value and the U0 value respectively into the function codes above, inverter would automatically calibrate the AI zero off and gain.

AC.12	A01 target voltage 1	0.500V~4.000V	Factory calibration	☆
AC.13	A01 measured voltage 1	0.500V~4.000V	Factory calibration	☆
AC.14	A01 target voltage 2	6.000V~9.999V	Factory calibration	☆
AC.15	A01 measured voltage 2	6.000V~9.999V	Factory calibration	☆
AC.16	A02 target voltage 1	0.500V~4.000V	Factory calibration	☆
AC.17	A02 measured voltage 1	0.500V~4.000V	Factory calibration	☆
AC.18	A02 target voltage 2	6.000V~9.999V	Factory calibration	☆
AC.19	A02 measured voltage 2	6.000V~9.999V	Factory calibration	☆

This group of function codes are used for calibration of analog output AO. Generally, there is no need of calibration in application, for it has been calibrated in factory. When restoring the factory value, the parameter would be auto restored to the default value of factory calibration.

Target voltage refers to inverter theoretical output voltage, while measured voltage refers to the actual voltage that has been measured through measuring instrument such as multimeter.

Section VI. Fault Diagnosis & Solutions

FIE1 is able to make full use of the device performance, while implementing effective protection. You may encounter following fault tips during operation, please control the following table analysis the possible causes, and rule out the fault.

6-1 Fault alarm and solutions

FIE1 series can not only make full use of equipment performance but also implement effective protection. FIE1 series has 51 alarming information and protection functions. Once fault occurs, protection function acts, output stops, inverter fault relay contact starts, and fault code is been displayed on the display panel. Before consulting the service department, the user can perform self-check according to the prompts of this chapter, analyze the fault cause and find out the solution. If the fault is caused by the reasons as described in the dotted frame, please consult the agents or our company directly.

Among the 51 items of warning information:

Fault no.22= E. HArd refers to hardware over-current or over-voltage signal. In most cases hardware over-voltage fault led to fault no.22= E. HArd alarming.

Fault name	Inverter unit protection
Panel display	Fault No.1= E.IGbt
	1, Inverter output loop short circuit 2. Too long wiring between motor and inverter
	3, Module overheating
Fault investigation	4, Inverter internal wiring loose
	5, Main control board anomalies
	6, Driver board anomalies
	7, Inverter module anomalies
	1, Eliminate external faults
Fault	2, Add reactor or output filter
Fault	3, Check air duct, fan and eliminate existing problems
countermeasures	4, Insert all connecting wires
	5, For technical support

Fault name	Acceleration over current
Panel display	Fault No.2= E.oCAC
	1, Acceleration time too short
	2, Improper manual torque boost or V/F curve
	3, Low voltage
Foult investigation	4, Inverter output loop grouded or short circuit
Fault investigation	5, Vector control mode without parameter identification
	6, Start the rotating motor
	7, Sudden load add in acceleration process
	8, Small type selection of inverter
Fault	1, Increase acceleration time
	2, Adjust manual torque boost or V/F curve
countermeasures	3, Adjust voltage to normal range

4, Eliminate external faults
5, Parameter identification
6, Select speed tracking start or restart after motor stop
7, Cancel sudden added load
8, Choose inverter of greater power level

Fault name	Deceleration over current
Panel display	Fault No.3= E.oCdE
Fault investigation	 Inverter output loop grouded or short circuit Vector control mode without parameter identification Deceleration time too short Low voltage Sudden load add in deceleration process
	6, No braking unit or brake resistence installed
	1, Eliminate external faults
	2, Parameter identification
Fault	3, Increase deceleration time
countermeasures	4, Adjust voltage to normal range
	5, Cancel sudden added load
	6, Install braking unit and brake resistence

Fault name	Constant speed over current
Panel display	Fault No.4= E.oCCo
	1, Inverter output loop grouded or short circuit
	2, Vector control mode without parameter identification
Fault investigation	3, Low voltage
	4, Sudden load add in deceleration process
	5, Small type selection of inverter
	1, Eliminate external faults
Fault	2, Parameter identification
Fault	3, Adjust voltage to normal range
countermeasures	4, Cancel sudden added load
	5, Choose inverter of greater power level

Fault name	Acceleration over voltage
Panel display	Fault No.5= E.oUAC
	1, No braking unit or brake resistence installed
Foult investigation	2, High input voltage
Fault investigation	3, External force drive motor operation during acceleration process
	4, Acceleration time too short
	1, Install braking unit and brake resistence
Fault	2, Adjust voltage to normal range
countermeasures	3, Cancel external force or install brake resistence
	4, Increase acceleration time

Section VI. Fault Diagnosis & Solutions

Fault name	Deceleration over voltage
Panel display	Fault No.6= E.oUdE
	1, High input voltage
E	2, External force drive motor operation during deceleration process
Fault investigation	3, Deceleration time too short
	4, No braking unit or brake resistence installed
1, Adjust voltage to normal range	
Fault	2, Cancel external force or install brake resistence
countermeasures	3, Increase deceleration time
	4, Install braking unit and brake resistence

Fault name	Constant speed over voltage
Panel display	Fault No.7= E.oUCo
Fault investigation	1, External force drive motor operation 2, High input voltage
Fault	1, Cancel external force or install brake resistence
countermeasures	2, Adjust voltage to normal range

Fault name	Control power supply fault
Panel display	Fault No.8= E.CPF
Fault investigation	1, Input voltage is not within the specified range
Fault	
countermeasures	1, Adjust voltage to normal range

Fault name	Undervoltage fault
Panel display	Fault No.9= E.LU
Fault investigation	1, Instantaneous power-off
	2, Input voltage is not within the specified range
	3, Bus voltage anomalies
	4, Rectifier and buffer resistance anomalies
	5, Driver board anomalies
	6, Control board anomalies
Fault	1, Reset fault
	2, Adjust voltage to normal range
countermeasures	3, For technical support

Fault name	Inverter overload
Panel display	Fault No.10= E.oL1
Fault investigation	1, Small type selection of inverter 2, Overload or motor stall
Fault countermeasures	1, Choose inverter of greater power level 2, Reduce the load and check the motor and mechanical condition

Fault name	Motor overload
Tuait hume	

Panel display	Fault No.11= E.oLt
	1, Small type selection of inverter
Fault investigation	2, Improper setup of P9.01
	3, Overload or motor stall
Fault	1, Choose inverter of greater power level
Fault countermeasures	2, Set P9.01 correctly
	3, Reduce the load and check the motor and mechanical condition

Fault name	Input phase lack
Panel display	Fault No.12= E.ILF
Fault investigation	1, Driver board anomalies
	2, Lightning protection board (BESP) anomalies
	3, Control board anomalies
	4, 3-phase input power-supply anomalies
	1, Replace driver, power- supply board or contactor
Fault	2, For technical support
countermeasures	3, Eliminate external loop faults

Fault name	Output phase lack
Panel display	Fault No.13= E.oLF
	1, Wiring between motor and inverter anomalies
Foult investigation	2, Inverter unbalanced 3-phase output
Fault investigation	3, Driver board anomalies
	4, Module anomalies
Fault	1, Eliminate external loop faults
Fault	2, Check 3-phase winding and eliminate faults
countermeasures	3, For technical support

Fault name	Module overheating
Panel display	Fault No.14= E.oH1
Fault investigation	1, Air duct block
	2, Fan damage
	3, High ambient temperature
	4, Module thermistor damage
	5, Inverter module damage
	1, Clean air dust
Fault countermeasures	2, Replace the fan
	3, Reduce ambient temperature
	4, Replace thermistor
	5, Replace inverter module

Fault name	External equipment fault
Panel display	Fault No.15= E.EIOF
Fault investigation	1, Input external fault signal through DI
	2, Input external fault signal through IO

Fault	1, Reset operation
countermeasures	,

Fault name	Communication fault	
Panel display	Fault No.16= E.CoF1	
	1, Abnornal communication cable	
Fault investigation	2, Wrongly set communication expansion card P0.28	
	3, Wrongly set communication parameter PD group	
	4, Position machine operation anomalies	
	1, Check the communication cable	
Fault	2, Set communication expansion card type correctly	
countermeasures	3, Set communication parameter correctly	
	4, Check position machine cable	

Fault name	Contactor fault
Panel display	Fault No.17= E.rECF
Fault investigation	1, Input phase lack 2, Driver board , contactor anomalies
Fault	1, Eliminate external loop faults
countermeasures	2, Replace driver, power- supply board or contactor

Fault name	Current inspection fault
Panel display	Fault No.18= E.HALL
Fault investigation	1, Driver board anomalies
	2, Hall devices anomalies
Fault	1, Replace driver board
countermeasures	2, Replace hall devices

Fault name	Motor tuning fault
Panel display	Fault No.19= E.tUnE
Fault investigation	1, Parameter identification process overtime
	2, Wrongly set motor parameters
Fault	1, Check wire between inverter and motor
countermeasures	2, Set motor parameters correctly according to the nameplate

Fault name	Encoder /PG card fault
Panel display	Fault No.20= E.PG1
Fault investigation	1, Encoder anomalies
	2, PG card anomalies
	3, Encoder type mismatch
	4, Encoder connections fault
Fault	1, Replace encoder
	2, Replace PG card
countermeasures	3, Set motor encoder type correctly

4, Eliminate circuit faults	
-----------------------------	--

Fault name	EEPROM read & write fault
Panel display	Fault No.21= E.EEP
Fault investigation	1, EEPROM chip damage
Fault	4. Deplace main control bound
countermeasures	1, Replace main control board

Fault name	Inverter hardware fault
Panel display	Fault No.22= E.HArd
Fault investigation	1, Presence of overvoltage
	2, Presence of overcurrent
Fault	1, Treat according to overvoltage fault
countermeasures	2, Treat according to overcurrent fault

Fault name	Short circuit to ground fault
Panel display	Fault No.23= E.SHot
Fault investigation	1, Motor short circuit to ground
Fault	
countermeasures	1, Replace cable or motor

Fault name	Total running time arrival fault
Panel display	Fault No.26= E.ArA
Fault investigation	1, Total running time arrive the set value
Fault	1. Clear record information using parameter initialization function
countermeasures	1, Clear record information using parameter initialization function

Fault name	User-defined fault 1
Panel display	Fault No.27= E.USt1
Fault investigation	1, Input user-defined fault 1 signal through multi-function terminal DI 2, Input user-defined fault 1 signal through virtual IO function
Fault countermeasures	1, Reset operation

Fault name	User-defined fault 2
Panel display	Fault No.28= E.USt2
Fault investigation	1, Input user-defined fault 2 signal through multi-function terminal DI 2, Input user-defined fault 2 signal through virtual IO function
Fault countermeasures	1, Reset operation

Fault name	Total power-on time arrival fault
Panel display	Fault No.29= E.APA
Fault investigation	1, Total power-on time arrive the set value

Fault countermeasures

1, Clear record information using parameter initialization function

Fault name	Load off fault
Panel display	Fault No.30= E. ULF
Fault investigation	1, Inverter running current less than P9.64
Fault	1, Confirm whether load off or P9.64, P9.65 parameter settings in
countermeasures	accordance with the actual operating condition

Fault name	PID feedback loss during operation fault		
Panel display	Fault No.31= E.PID		
Fault investigation 1, PID feedback less than PA.26 set value			
Fault			
countermeasures	1, Check PID feedback signal or set PA.26 to a proper value		

Fault name	t name Each wave current limiting fault		
Panel display Fault No.40= E.CbC			
	1, Excessive load or motor stall		
Fault investigation	2, Small type selection of inverter.		
Fault	1, Reduce the load and check the motor and mechanical condition		
countermeasures	2, Choose inverter of greater power level		

Fault name	ne Motor switching fault		
Panel display Fault No.41= E.tSr			
Fault investigation	1, Change current motor selection during inverter operation		
Fault	1. Cuitability material and a standard		
countermeasures 1, Switch the motor after inverter stopped			

Fault name	Excessive speed deviation fault			
Panel display	Fault No.42= E.SdL			
Fault investigation	1, Improper set inspection parameters P9.69, P9.60 2. Wrongly set encoder parameters			
	3, No parameter identification			
Fault	 Set inspection parameters properly according to actual situation Set motor encoder parameters correctly 			
countermeasures	3, Motor parameter identification			

Fault name	Motor overspeed fault		
Panel display Fault No.43= E.oSF			
	1, No parameter identification		
Fault investigation	2, Wrongly set encoder parameters		
	3, Improper set inspection parameters P9.69, P9.60		
Fault 1, Motor parameter identification			
countermeasures 2, Set motor encoder parameters correctly			

3, Set inspection parameters properly according to actual situation

Fault name	Motor overtemperature fault			
Panel display	/ Fault No.45= E.oHt			
Fault investigation 1, Temperature sensor wiring loose 2, Motor overtemperature				
Fault 1, Check sensor wiring and eliminate fault countermeasures 2, Reduce carrier frequency or take other cooling measures for the result				

Fault name	Initial position fault		
Panel display Fault No.51= E.PoSF			
Fault investigation	1, Excessive deviation between motor parameters and the paractical value		
Fault	1, Reconfirm motor parameter settings, pay attention to the rated current		
countermeasures	value		

6-2 Common fault and solutions

During the inverter using process, the following faults may occur. Please conduct simple fault analysis by referring to the methods below:

No.	Fault Phenomenon	Possible Cause	Solution
1	No display or error codes occur upon power-on	Abnormal input power supply,switch power supply fault of driven board, rectifier bridge damage, inverter buffer resistance damage, control board/ keyboard fault, control board/driven board/keyboard disconnection	Check input power supply, bus voltage, re-plug 26 core cable, consult the manufacturer
2	Display"510" upon power-on	Poor contact between driven board and control board, device damage on control board, motor or motor cable short circuited, hall fault, grid undervoltage	Re-plug 26 core cable, consult the manufacturer
3	"Error 23=E.Shot" alarming upon power on	The motor or the output line is short circuited to the earth, the inverter is damaged.	Measure the insulation of the motor and output line with magneto-ohmmeter, consult the manufacturer.
4	The inverter displays normally upon power-on, but "510" is displayed upon running and stops immediately	The fan is either damaged or blocked, peripheral control terminal short circuited	Replace the fan, exclude external short-circuit fault
5	Frequent fault reportERR14 =E.oH1(module overheating)	The carrier frequency is set too high, the fan is damaged or the air duct is blocked, inverter internal components damaged	Replace the fan, clean air duct, reduce carrier frequency (P0.15), consult manufacturer.
6	Motor no rotating after inverter power-on	Motor or motor cable, wrongly set inverter parameters(motor parameter), poor contact between driven board and control board, driven board fault	Replace the motor or remove the mechanical fault, check and reset the parameters, confirm connection between inverter and motor
7	DI terminal invalid	Wrongly set inverter parameters, wrong external signal, SP and +24V jumper loosening, control board fault	Check and reset the P4 relevant parameters, reconnect cables, reconfirm PLC and +24V jumper, consult the manufacturer.
8	Closed loop vector control, motor speed cannot ascend	Encoder fault; PG card fault; drive board fault; encoder wrong connection	Replace encoder&reconfirm connections; replace PG

		or poor contact	card; consult manufacturer.
9	The inverter frequently reports over current fault & over voltage fault	Motor wrongly set parameters, improper acc./dec. time, load fluctuation	Reset motor parameters or motor tuning, set proper acc./ dec.time, consult manufacturer.

Caution:

- After power off and within 5 minutes of charging indicator light(!CHARGE)out, please do not touch any spare parts inside the machine. The operator must use instrument to confirm capacitor discharge is comleted, then could implement machine operation, or there may be electric shock risk!
- Please do not touch the printed circuit board and IGBT etc internal device without electrostatic prevention measures. Or it could lead to the damage of components.

Section VII. Inspection & Maintenance

7-1 Inspection and Maintenance

Under normal working conditions, in addition to daily inspection, the frequency converter should be subject to regular inspection (for example inspection for overhaul or as specified but at an interval of at most six months). Please refer to the following table to prevent faults.

Daily	Regular	Check item	Check details	Method	Criterion
V		LED and OLED display	If any abnormal display	Visual check	As per use state
V	\checkmark	Fan	If any abnormal noise or vibration	Visual and audible check	No anomalies
V		Surrounding conditions	Temperature, humidity, dust content, harmful gas, etc.	Visual\ audible\ sensory check	As per 2-1 item
V		Input output voltage	lf any abnormal input, output voltage	Measure R, S, T and U, V, W terminals	As per standard specifications
	\checkmark	Main circuit	Fasteners whether loose, if any signs showing overheat, discharging, or too high dust content, or the air piping is blocked	Check visually, tighten the fastenings, and clean the related parts	No anomalies
	\checkmark	Electrolytic capacitor	If any abnormal appearance	Check visually	No anomalies
	\checkmark	Current-conducting leads or blocks	Loose or not	Check visually	No anomalies
	\checkmark	Terminals	If the screws or bolts loose	Tighten the loose screws or bolts	No anomalies

" $\sqrt{}$ " means need daily check or regularly check.

For inspection, do not disassemble or shake the parts without reason, or pull off the plug-inparts at random. Otherwise, the unit will not operate normally, or can not enter the mode of fault display, or causes faults of components or even parts of the main switch components IGBT module is damaged.

When needing measurement, the user should note that much different results will be gained possibly if the measuring is performed with different instruments. It is recommended that the input voltage be measured with pointer-type voltmeter, output voltage with rectification voltmeter, input and output current with tong-test ammeter, and power with electrically-driven wattmeter.

7-2 Regular replacement of the device

In order to ensure the operation reliability of the frequency converter, in addition to regular maintenance and inspection, all the parts suffering long-term mechanical wear should be replaced at a regular interval, which includes all cooling fans and the filtering capacitors of main circuits for energy buffer and interchange and PCBs. For continuous use under normal conditions, these parts can be replaced according to the following table and the operating environment, loads and the current state of frequency converter.

Part name	Standard replacement years
Cooling fan	1~3 years
Filtering capacitor	4~5 years
PCB	5~8 years
(printed circuit board)	

7-3 Storage

The following actions must be taken if the frequency converter is not put into use immediately after delivery to the user and need to keep well for the time being or stored for a long time:

- Stored in a dry and adequately-ventilated place without dust and metal powder at the temperature specified in the specifications.
- If the frequency converter is not put into use after one year, a charge test should be made, so as to resume the performance of the filtering capacitor of main circuit in it. For charging, a voltage regulator should be used to slowly increase the input voltage of the frequency converter until it reaches the rating, and the charge should last more than 1~2 hours. This test should be made at least once a year.
- ※ Don't perform breakdown test at random, for this test will cause shorter life of the frequency converter. The insulation test must be performed after the insulation resistance is measured with a 500-volt mega ohm and this value must not be less than 4MΩ.

7-4 Measuring and Judgment

- If the current is measured with the general instrument, imbalance will exists for the current at the input terminal. Generally, differing by not more than 10% is normal. If it differs by 30%, inform the factory to replace the rectification bridge, or check if the error of threephase input voltage is above 5V.
- If the three-phase output voltage is measured with a general multi-meter, the read data is not accurate due to the interference of carrier frequency and only for reference.

7-5 Safety Precaution

- X Only specially trained persons are allowed to disassembly, replace the drive components.
- Before the inspection and maintenance, inverter must be confirmed at least 10 minutes after power off or charged(CHARGE) light is off, otherwise there is risk of electric shock.
- * Avoid metal parts leaving in the drive, or it may result in equipment damage.

Appendix I VTdrive S485 Card & RS485 Communication Protocol

I-1 VTdrive S485 card

VTdrive S485 card produced by VTDRIVE TECHNOLOGY LIMITED is used with FIE1 series inverter as RS485 communication card. It contains the following resources:

Item	Specification	Description
Input terminal	2-channel digital signal input 4	DI7~DI8
O day the main of	1-channel relay signal output	TA2,TB2,TC2
Output terminal	1-channel digital signal output	DO2
O	DO 105	Support Modbus-RTU protocol (Appendix
Communication	RS485 communication port	I:500 Monbus communication protocol)

I-2 Mechanical installation and control terminal function description

Installation, appearance, control terminal function definitions, jumper, respectively, see Appendix I, Figure 1, Table 1, Table 2. Please install after inverter completely powered down.

 Align VTdrive S485 card and inverter control board's expansion card interface and the positioning holes.

2) Fix the screw.

Fig1 VTdrive S485 card assembly schematic diagram Table 1 Control terminal function description

Category	Terminal symbol	Terminal name	Function description
	Symbol		
Function digital	DI7-SP1	DI7	1.Optocoupler isolation,compatible with bipolar input
input terminal			2.Input impedance:4.7kΩ
DI	DI8-SP1	DI8-SP1 DI8	3. Voltage range when level input: 9~30V
Digital output DO2			Optocoupler isolation, bipolar open collector
	DO2-COM	DO2	electrode output voltage: 0V~24V output
			current range:0mA~50mA
		Normally closed	
Relay output	TA2-TB2	terminal	Contact drive capability:AC250V,
(RELAY2)	TAO TOO	Normally open	3A,COSφ=0.4. DC30V, 1A
TA2-TC2	IAZ-1 CZ	terminal	
RS-485	485+/485-	Communication	Modbus-RTU protocol communication input,
communication		interface terminal	output signal terminal, isolation input

Table 2	2 Jumper description		
	Jumper number	Description	
	Jumper number	Description	
	J1	SP1 connection mode selection	
	J2	RS485 Termination resistor selection	

I-3 Communication protocol

I-3-1 Protocol content

The serial communication protocol defines the information content and format of the use of the transmission in serial communication. Including: the host polling (or broadcast) format, host encoding methods.Concent including: require action of the function code, data transmission and error checking and so on. Slave machine's response is the same structure, including: action confirmation, return data and error checking. Slave error occurred when receiving information, or can not do what the host request action, it will organize a fault message as the response back to the host computer.

Application mode:

The inverter accessing with " single main multi-slave" PC/PLC control network which equipped with RS232/RS485 bus.

Bus structure:

(1)Interface mode

RS232/RS485 hardware interface

(2)Transmission mode

Asynchronous serial, half-duplex transmission. At the same time host and slave computer can only permit one to send data while the other can only receive data. Data in the process of serial asynchronous communication is in the message format and sent one frame by one frame.

(3)Topological mode

In single-master system, the setup range of slave address is 1 to 247. Zero refers to broadcast communication address. The address of slave must is exclusive in the network. That is one condition of one slave machine.

I-3-2 Protocol Description

FIE1 series inverter communication protocol is an asynchronous serial master-slave Modbus communication protocol, only one device in the network (master) to establish protocol (known as the "query / command"). Other device (slave) can only provide data response to the host query / command, or make the appropriate action according to the host query / command. Host refers to a personal computer (PC), industrial control equipment, or programmable logic controller (PLC), etc. The slave indicates FIE1 inverter. Host can not only communicate separately with the slave, but also broadcast messages to the lower machine. For separate access to the host query / command, the slave should return a message (called the response), and for broadcast information issued by host machine , feedback needs not to be responded to the host.

Communication data structure FIE1 series inverter Modbus protocol communication data format is as follows: using RTU mode, messages are sent at least at interval of 3.5 bytes times pause. In a variety of bytes in the network baud rate of time, this could be most easily achieved (see below T1-T2-T3-T4 shown). The transmission of a domain is the

device address.

Transmission characters are hexadecimal 0...9, A...F. Network equipment continue to detect the network bus, including a pause interval of time. When the first field (the address field) is received, each device decodes it to determine whether sent to their own. At least 3.5 bytes times pause after the last transmitted character, a calibration of the end of the message. A new message may start after this pause.

The entire message frame must be used as a continuous stream. If the pause time frame prior to the completion of more than 1.5 byte times, the receiving device will refresh the incomplete message and assumes that the next byte will be the address field of a new message. Similarly, if a new message starts in less than 3.5 bytes times following the previous message, the receiving device will consider it a continuation of the previous message. This will set an error, as the value in the final CRC field will not be valid for the combined messages. A typical message frame is shown below.

RTU frame format:

START	3.5-character time	
Slave address ADDR	Communication address:1~247	
Command code CMD	03:Read slave parameters; 06:Write slave parameters	
DATA(N-1)		
DATA(N-2)	Everythen and a second to a define the state of the second s	
	Function code parameter address,function code parameter number,function code parameter value,etc.	
DATA0		
CRC CHK low order	Detection value (CDC value	
CRC CHK high order	Detection value:CRC value。	
END	At least 3.5-character time	

CMD(command instructions) and DATA(material words description)

Command code:03H,reads N words(There are 12 characters can be read at most). For example:the inverter start address F0.02 of the slave machine address 01 continuously reads two consecutive values.

Host command

ADR	01H
CMD	03H
Start address high order	F0H
Start address low order	02H
Register number high order	00H
Register number low order	02H
CRC CHK low order	CRC CHK values to be calculated
CRC CHK high order	

Slave response

PD.05=0:

ADR	01H
CMD	03H
Byte number high order	00H

Appendix I VTdrive S485 Card & RS485 Communication Protocol

Byte number low order	04H
Data P002H high order	00H
Data P002H low order	00H
Data P003H high order	01H
CRC CHK low order	CRC CHK values to be calculated
CRC CHK high order	

PD.05=1:

ADR	01H	
CMD	03H	
Byte number	04H	
Data F002H high order	00H	
Data F002H low order	00H	
Data F003H high order	00H	
Data F003H low order	01H	
CRC CHK low order		
CRC CHK high order	CRC CHK values to be calculated	

Command code:06H write a word

For example: Write 5000 (1388H) into F00AH which slave address is 02H.

Master command information

ADR	02H	
CMD	06H	
Data address high order	F0H	
Data address low order	0AH	
Data content high order	13H	
Data content low order	88H	
CRC CHK low order		
CRC CHK high order	CRC CHK values to be calculated	

Slave response

ADR	02H	
CMD	06H	
Data address high order	F0H	
Data address low order	0AH	
Data content high order	13H	
Data content low order	88H	
CRC CHK low order		
CRC CHK high order	CRC CHK values to be calculated	

I-4 Cyclical Redundancy Check:

Cyclical Redundancy Check—CRC mode:CRC(Cyclical Redundancy Check) is in RTU frame format, message contains an error-checking field that is based on a CRC method. The CRC field checks the contents of the entire message. The CRC field is two bytes, containing a 16-bit binary value. The CRC value is calculated by the transmitting device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of the message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal, an error results. The CRC is started by 0xFFFF. Then a process begins of applying successive 8-bit bytes of the message to the current contents of the register. Only the eight bits of data in each character are used for generating the CRC. Start and stop bits, and the parity bit, do not apply to the CRC.

During generation of the CRC, each eight-bit character is exclusive XOR with the register contents. Then the result is shifted in the direction of the least significant bit (LSB), with a ZERO filled into the most significant bit (MSB) position. The LSB extracted and examined. If the LSB was 1, the register then exclusive XOR with a preset, fixed value. If the LSB was 0, no exclusive XOR takes place. This process is repeated until 8 shifts have been performed. After the last (8) shift, the next eight-bit byte is exclusive XOR with the register's current value, and the process repeats for 8 more shifts as described above. The final contents of the register, after all the bytes of the message have been applied, is the CRC value.

When CRC appended to the message, the low byte is appended first, and then the high byte.

```
CRC calculation program:
```

```
unsigned int cal_crc16 (unsigned char *data, unsigned int length)
{
    unsigned int i,crc_result=0xffff;
    while(length--)
    {
        crc_result^=*data++;
        for(i=0;i<8;i++)
        {
        if(crc_result&0x01)
        crc_result=(crc_result>>1)^0xa001;
        else
        crc_result=crc_result>>1;
        }
     }
     crc result=((crc result&0xff)<<8))(crc result>8);return(crc result);
```

I-5 Communication parameter address

The chapter is about communication contents, it's used to control the inverter operation, the status of the inverter and related parameter setup. Read and write function code parameters (Some function codes are not able to be changed, only for the manufacturer use.). The mark rules of function code parameters address:

The group number and mark of function codes are parameter address for indication rules.

High byte:F0~FF(P group), A0~AF(A group), 70~F(U group)Low byte:00~FF

For example: P3.12, the address indicates F30C

Caution:

Group PF: Parameters could not be read or be modified.

Group U: Parameters could be read but not be modified.

Some parameters can not be changed during operation, some parameters regardless of the kind of state the inverter in, the parameters can not be changed. Change the function code parameters, pay attention to the scope of the parameters, units, and relative instructions.

Besides, if EEPROM is frequently stored, it will reduce the service life of EEPROM. In some communication mode, function code needn't to be stored as long as changing the RAM value.

Group P: to achieve this function, change high order F of the function code address into 0. Group A: to achieve this function, change high order A of the function code address to be 4.

Corresponding function code address are indicated below:

High byte: 00~0F(P group), 40~4F(A group) Low byte: 00~FF

For example:

Function code P3.12 can not be stored into EEPROM, address indicates to be 030C, function code A0-05 can not be stored in EEPROM, address indicates to be 4005 ; This address can only act writing RAM, it can not act reading, when act reading, it is invalid address. For all parameters, command code 07H can be used to achieve this function.

Stop/running parameter:

Parameter addr.	Parameter description
1000	* Communication setup value(-10000~10000)(Decimal)
1001	Running frequency
1002	Bus voltage
1003	Output voltage
1004	Output current
1005	Output power
1006	Output torque
1007	Running speed
1008	DI input status
1009	DO output status
100A	Al1 voltage
100B	Al2 voltage

100C	Al3 voltage
100D	Counting value input
100E	Length value input
100F	Load speed
1010	PID setup
1011	PID feedback
1012	PLC process
1013	PULSE input pulse frequency, unit 0.01kHz
1014	Feedback speed, unit 0.1Hz
1015	Rest running time
1016	Al1 voltage before correction
1017	Al2 voltage before correction
1018	Al3 voltage before correction
1019	Line speed
101A	Current power on time
101B	Current running time
101C	PULSE input pulse frequency, unit 1Hz
101D	Communication setup value
101E	Actual feedback speed
101F	Main frequency X display
1020	Auxiliary frequency Y display

Caution:

The communication setup value is percentage of the relative value, 10000 corresponds to 100.00%,-10000 corresponds to -100.00%. For data of dimensional frequency, the percentage value is the percentage of the maximum frequency. For data of dimensional torque, the percentage is P2.10, A2.48, A3.48, A4.48 (Torque upper digital setup, corresponding to the first, second, third, fourth motor).

Command word address	Command function
	0001:Forward operation
	0002:Reverse operation
2000	0003:Forward jog
	0004:Reverse jog
	0005:Free stop
	0006:Speed-down stop
	0007:Fault reset

Control command input to the inverter (write-only)

Read inverter status: (read-only)	
Status word address	Status word function
	0001:Forward operation
3000	0002:Reverse operation
	0003:Stop

Parameters lock password check: (if the return is the 8888H, it indicates the password checksum pass)

Password address	Contents of input password	
1F00	****	

Digital output terminal control: (write-only)

Command address	Command content
	BIT0:DO1 Output control
	BIT1:DO2 Output control
	BIT2 RELAY1 Output control
2001	BIT3:RELAY2 Output control
	BIT4:FMR Output control
	BIT5:VDO1
	BIT6:VDO2
	BIT7:VDO3
	BIT8:VDO4
	BIT9:VDO5

Analog output AO1 control: (write-only)

Command address	Command content
2002	0~7FFF indicates 0%~100%

Analog output AO2control: (write-only)

Command address	Command content
2003	0~7FFFindicates 0%~100%

(PULSE)output control :(write-only)

Command address	Command content
2004	0~7FFFindicates 0%~100%

Inverter fault description:

Inverter fault address	Inverter fault information
8000	0000:No fault
	0001:Reserved
	0002:Acceleration over current
	0003:Deceleration over current

	0004:Constant speed over current
	0005:Acceleration over voltage
	0006:Deceleration over voltage
	0007:Constant speed over voltage
	0008:Buffer resistance overload fault
	0009:Under-voltage fault
	000A:Inverter overload
	000B:Motor overload
	000C:Input phase lost
	000D:Output phase lost
	000E:Module overheating
	000F:External fault
	0010:Communication fault
	0011:Contactor fault
	0012:Current detection fault
	0013:Motor tuning fault
	0014:Encoder/PG card fault
	0015:Parameter read and write fault
	0016:Inverter hardware fault
	0017:Motor earthing short-circuit fault
	0018:Reserved
	0019:Reserved
	001A:Running time arrive fault
	001B:User defined fault 1
	001C:User defined fault 2
	001D:Power on time arrive fault
	001E:Load off
	001F:PID feedback lost during operation
	0028:Fast current limit timeout fault
	0029:Motor shifting fault during operation
	002A:Excessive speed deviation
	002B:Motor over speed
	002D:Motor over-temperature
	005A:Encoder line number setup fault
	005B:Encoder not connected
	005C:Initial position error
	005E:Speed feedback fault
L	

Communication fault information describing data (fault code):

Communication fault address	Fault function description
8001	0000:No fault 0001:Password error 0002:Command code error 0003:CRC check error 0004:Invalid address 0005:Invalid parameter 0006:Parameter change invalid 0007:The system is locked 0008:Operating EEPROM 0007

Pd group communication parameters description

	Baud rate	Factory default value	6005
Pd.00	Setup range	1 bit:MODUBS baud 0:300BPS 2:1200BPS 4:4800BPS 6:19200BPS 8:57600BPS	rate 1:600BPS 3:2400BPS 5:9600BPS 7:38400BPS 9:115200BPS

This parameter is used to set the data transfer rate between the host computer and the inverter. Caution: The baud rate of the position machine and the inverter must be consistent. Or, communication is impossible. The higher the baud rate is, the faster the communication is.

	Data format	Factory default value	0	
Pd.01	Sotup roppo	0:No check:data forr 1:Even parity check:		
	Setup range	2:Odd parity check:data format <8,0,1> 3:No check:data format <8-N-1>		

The data format of the position machine and the inverter setup must be consistent, Otherwise communication is impossible.

Pd.02	Local address	Factory default value	1
	Setup range	1~247,0 is broadcas	t address.

When the local address is set to 0, that is the broadcast address, achieve position machine's broadcast function. The local address is unique (except for the broadcast address), which is the basis for the position machine and the inverter point to point communication.

Pd.03	Response delay	Factory default value	2ms
	Setup range	0~20ms	

Response delay: It refers to the interval time from the inverter finishes receiving data to sending data to the position machine. If the response delay is less than the system processing time, then the response based on the time delay of the system processing time. If the response delay is more than the system processing time, after the system process the data, it should be delayed to wait until the response delay time is up, then sending data to host machine.

Pd.04	Communication overtime	Factory default value	0.0 s
	Setup range	0.0 s (Invalid) 0.1~60.0s	

When the function set to 0.0s, the communication overtime parameter is invalid.

When the function code is set to valid value, if the interval time between one communication with the next communication exceeded the communications overtime, the system will report communication fault error (fault serial 16= E.CoF1). Under normal circumstances, it will be set to invalid value. If the system of continuous communication, setting parameters, you can monitor the communication status.

Pd.05	Communication protocol selection	Factory default value	0
	Setup range	0:Non standard Mod 1:Standard Modbus	

Pd.05=1:Select Standard Modbus protocol.

Pd.05=0:Reading command, the slave returns the number of bytes which has one more byte than the standard Modbus protocol, for specific please refer to the protocol, the part of the "5 communication data structure".

Pd.06	Communication read the current resolution	Factory default value	0
	Cotup ropgo	0:0.01A	
	Setup range	1:0.1A	

To determine when the communication reads the output current, what the output current value unit is.

Appendix II Parameter Settings List

Parameters factory default values are shown as below:

Code	ers factory default values are shown as below: Description/Display	Factory setting	Set value 1	Set value 2	Page
UO	Monitor function group: U0.00-U0.61				
U0.00	Running frequency	0.01Hz			40
U0.01	Set frequency	0.01Hz			40
U0.02	DC bus voltage	0.1V			40
U0.03	The output voltage	1V			40
U0.04	Motor output current	0.01A			40
U0.05	The output power	0.1kW			41
U0.06	Output torque	0.1%			41
U0.07	DI input status	1			41
U0.08	DO output status	1			41
U0.09	AI1 voltage	0.01V			41
U0.10	Al2 voltage	0.01V			41
U0.11	AI3 voltage	0.01V			41
U0.12	Count value	1			42
U0.13	Length value	1			42
U0.14	Load speed display	1			42
U0.15	PID set point	1			42
U0.16	PID feedback	1			42
U0.17	PLC stage	1			42
U0.18	PULSE pulse input frequency	0.01kHz			42
U0.19	Speed feedback	0.1Hz			42
U0.20	Surplus running time	0.1Min			42
U0.21	Al1 voltage before correction	0.001V			42
U0.22	Al2 voltage before correction	0.001V			42
U0.23	Al3 voltage before correction	0.001V			42
U0.24	Linear velocity	1m/Min			42
U0.25	Current power on time	1Min			42
U0.26	Current running time	0.1Min			42
U0.27	PULSE pulse input frequency	1Hz			42
U0.28	Communication set value	0.01%			42
U0.29	Encoder feedback speed	0.01Hz			43

U0.30	Main frequency X display	0.01Hz	43
U0.31	Auxiliary frequency Y display	0.01Hz	43
U0.32	View arbitrary memory address	1	43
U0.33	Synchronous motor rotor position	0.0°	43
U0.34	Motor temperature	1°C	43
U0.35	Target torque	0.1%	43
U0.36	Rotary variable position	1	43
U0.37	Power factor angle	0.1	43
U0.38	ABZ position	0.0	43
U0.39	VF target voltage separation	1V	43
U0.40	VF output voltage separation	1V	43
U0.41	DI input status intuitive display	-	43
U0.42	DO output status intuitive display	-	44
U0.43	DI function status intuitive display1	1	44
U0.44	DI function status intuitive display2	1	44
U0.45	Fault information	0	44
U0.46	Reserved	-	44
U0.47	Reserved	-	44
U0.48	Reserved	-	44
U0.49	Reserved	-	44
U0.50	0.5ms A holding time	0.01ms	44
U0.51	0.5ms B holding time	0.01ms	44
U0.52	0.5ms C holding time	0.01ms	44
U0.53	0.5ms D holding time	0.01ms	44
U0.54	0.5ms A execution time	0.01ms	44
U0.55	0.5ms B execution time	0.01ms	44
U0.56	0.5ms C execution time	0.01ms	44
U0.57	0.5ms D execution time	0.01ms	44
U0.58	Z signal counter	-	44
U0.59	Set frequency	0.01%	44
U0.60	Running frequency	0.01%	44
U0.61	Inverter status	1	44
P0	Basic function group:P0.00-P0.28	1	45
P0.00	GP type display	-	45
P0.01	Motor 1 control mode	0	45

P0.02	Command source selection	0	45
P0.03	Main frequency source X selection	4	46
P0.04	Auxiliary frequency source Y selection	0	47
P0.05	Auxiliary frequency source Y range selection	0	48
P0.06	Auxiliary frequency source Y range	100%	48
P0.07	Frequency source stacking selection	00	48
P0.08	Preset frequency	50.00Hz	49
P0.09	Running direction	0	49
P0.10	Maximum frequency	50.00Hz	49
P0.11	Frequency source upper limit	0	49
P0.12	Frequency upper limit	50.00Hz	49
P0.13	Frequency upper limit offset	0.00Hz	49
P0.14	Frequency lower limit	0.00Hz	50
P0.15	Carrier frequency	-	50
P0.16	Carrier frequency adjusting with temperature	0	50
P0.17	Acceleration time 1	-	50
P0.18	Deceleration time 1	-	50
P0.19	Acc./ dec. time unit	1	51
P0.21	Auxiliary frequency source offset frequency	0.00Hz	51
P0.22	Frequency command resolution	2	51
P0.23	Digital setup frequency memory selection upon stop	0	51
P0.24	Motor selection	0	52
P0.25	Acceleration / deceleration reference frequency	0	52
P0.26	Frequency UP/DOWN reference upon running	0	52
P0.27	Command source& frequency source binding	000	52
P0.28	Communication expansion card	0	53
P1	Parameters for motor 1: P1.00-P0.37		54
P1.00	Motor type selection	0	54
P1.01	Rated power	-	54
P1.02	Rated voltage	-	54
P1.03	Rated current	-	54
P1.04	Rated frequency	-	54
P1.05	Rated revolving speed	-	54
P1.06	Asynchronous motor stator resistance	-	54
P1.07	Asynchronous motor rotor resistance	-	54

	1	I
Asynchronous motor leakage inductance	-	54
Asynchronous motor mutual inductance	-	54
Asynchronous motor no load current	-	54
Synchronous motor stator resistance	-	54
Synchronous motor D-axis inductance	-	54
Synchronous motor Q-axis inductance	-	54
Synchronous motor inductance resistance unit	0	54
Synchronous motor back electromotive force coefficient	0.1V	54
Synchronous motor output phase lack detection time	0	55
Encoder pulses number	2500	55
Encoder type	0	55
ABZ incremental encoder AB phase	0	55
Encoder installation angle	0.00	55
UVW phase sequence	0	55
UVW encoder offset angle	0.00	55
Rotary transformer pole pairs	1	55
UVW pole-pairs	4	55
PG dropped inspection time	0.0s	56
Tuning selection	0	56
Vector control function group: P2.00-P2.22		57
Speed loop proportional gain 1	30	57
Speed loop integration time1	0.50s	57
Switching frequency1	5.00Hz	57
Speed loop proportional gain 2	20	57
Speed loop integration time 2	1.00s	57
Switching frequency 2	10.00Hz	57
Vector control slip gain	150%	57
Speed-loop filter time	0.000s	58
Vector control over-excitation gain	64	58
Torque upper limit source in speed control mode	0	58
Torque upper limit digital setup in speed control mode	150.0%	58
Excitation regulation proportional gain	2000	58
	1	
	Asynchronous motor mutual inductance Asynchronous motor no load current Synchronous motor Stator resistance Synchronous motor D-axis inductance Synchronous motor Q-axis inductance Synchronous motor inductance resistance unit Synchronous motor back electromotive force coefficient Synchronous motor output phase lack detection time Encoder pulses number Encoder type ABZ incremental encoder AB phase Encoder installation angle UVW phase sequence UVW encoder offset angle Rotary transformer pole pairs UVW pole-pairs PG dropped inspection time Tuning selection Vector control function group: P2.00-P2.22 Speed loop proportional gain 1 Speed loop proportional gain 2 Speed loop proportional gain 2 Speed loop integration time 2 Switching frequency 2 Vector control slip gain Speed-loop filter time Vector control slip gain	Asynchronous motor mutual inductance-Asynchronous motor no load current-Synchronous motor stator resistance-Synchronous motor Q-axis inductance-Synchronous motor Q-axis inductance0Synchronous motor deck electromotive force coefficient0.1VSynchronous motor output phase lack detection time0Encoder pulses number2500Encoder type0ABZ incremental encoder AB phase0UVW phase sequence0UVW pole-pairs1VW pole-pairs4PG dropped inspection time0.00sTuning selection0Speed loop proportional gain 130Speed loop proportional gain 220Speed loop proportional gain 21Synchring frequency 210.00HzVector control slip gain150%Speed-loop filter time0.00sVector control slip gain150.0%

P2.15	Torque regulation proportional gain	2000	58
P2.16	Torque regulation integration gain	1300	58
P2.17	Speed loop integration attribute	0	59
P2.18	Synchronous motor field weakening mode	1	59
P2.19	Synchronous motor field weakening depth	100%	59
P2.20	Maximum field weakening current	50%	59
P2.21	Field weakening auto regulation gain	100%	59
P2.22	Field weakening integration multiples	2	59
P3	V/F control group: P3.00-P3.15		59
P3.00	V/F curve setup	0	59
P3.01	Torque boost value	-	60
P3.02	Torque boost cut-off frequency	50.00Hz	60
P3.03	Multi-point V/F frequency point F1	0.00Hz	61
P3.04	Multi-point V/F voltage point V1	0.0%	61
P3.05	Multi-point V/F frequency point F2	0.00Hz	61
P3.06	Multi-point V/F voltage point V2	0.0%	61
P3.07	Multi-point V/F frequency point F3	0.00Hz	61
P3.08	Multi-point V/F voltage point V3	0.0%	61
P3.09	V/F slip compensation gain	0.0%	61
P3.10	VF over-excitation gain	64	62
P3.11	VF oscillation suppression gain	-	62
P3.13	VF separation voltage source	0	62
P3.14	VF separation voltage digital setup	0V	62
P3.15	VF separation voltage rise time	0.0s	63
P4	Input Terminal: P4.00-P4.39		63
P4.00	DI1 terminal function selection	1	64
P4.01	DI2 terminal function selection	4	64
P4.02	DI3 terminal function selection	9	64
P4.03	DI4 terminal function selection	12	64
P4.04	DI5 terminal function selection	13	64
P4.05	DI6 terminal function selection	2	64
P4.06	DI7 terminal function selection	12	64
P4.07	DI8 terminal function selection	13	64

		1	1
P4.08	DI9 terminal function selection	14	64
P4.09	DI10 terminal function selection	15	64
P4.10	DI filter time	0.010s	67
P4.11	Terminal command mode	0	67
P4.12	Terminal UP/DOWN variation rate	1.00Hz/s	70
P4.13	Al curve 1 minimum input	0.00V	70
P4.14	Al curve 1 minimum input corresponding setup	0.0%	70
P4.15	Al curve 1 maximum input	10.00V	70
P4.16	Al curve 1 maximum input corresponding setup	100.0%	70
P4.17	Al1 filter time	0.10s	70
P4.18	Al curve 2 minimum input	0.00V	71
P4.19	Al curve 2 minimum input corresponding setup	0.0%	71
P4.20	Al curve 2 maximum input	10.00V	71
P4.21	AI curve 2 maximum input corresponding setup	100.0%	71
P4.22	AI2 filter time	0.10s	71
P4.23	Al curve 3 minimum input	0.10V	71
P4.24	AI curve 3 minimum input corresponding setup	0.0%	71
P4.25	AI curve3 maximum input	4.00V	72
P4.26	AI curve 3 maximum input corresponding setup	100.0%	72
P4.27	AI3 filter time	0.10s	72
P4.28	PULSE minimum input	0.00kHz	72
P4.29	PULSE minimum input corresponding setup	0.0%	72
P4.30	PULSE maximum input	50.00	72
P4.31	PULSE maximum input corresponding setup	100.0%	72
P4.32	PULSE filter time	0.10s	72
P4.33	Al curve selection	321	72
P4.34	Al below minimum input setup selection	000	73
P4.35	DI1 delay time	0.0s	73
P4.36	DI2 delay time	0.0s	73
P4.37	DI3 delay time	0.0s	73
P4.38	DI terminal effective mode selection 1	00000	73
P4.39	DI terminal effective mode selection 2	00000	74
P5	Output terminal: P5.00-P5.22		74

P5.00	EM terminal output made coloction	0	75
	FM terminal output mode selection	-	-
P5.01	FMR selection (open collector output terminal)	0	75
P5.02	Relay output selection(TA1.TB1.TC1)	2	75
P5.03	Expansion card relay output selection (TA2.TB2.TC2)	2	75
P5.04	DO1 output selection(open collector output terminal)	1	75
P5.05	Expansion card DO2 output selection	1	75
P5.06	FMP output selection (pulse output terminal)	0	77
P5.07	AO1 output selection	0	77
P5.08	AO2 output selection	1	77
P5.09	FMP maximum output frequency	50.00kHz	78
P5.10	AO1 zero offset	0.0%	78
P5.11	AO1 gain	1.00	78
P5.12	Expansion card AO2 zero offset	0.00%	78
P5.13	Expansion card AO2 gain	1.00	78
P5.17	FMR output delay time	0.0s	78
P5.18	RELAY1 output delay time	0.0s	78
P5.19	RELAY2 output delay time	0.0s	78
P5.20	DO1 output delay time	0.0s	78
P5.21	DO2 output delay time	0.0s	78
P5.22	DO output terminal valid state selection	00000	78
P6	Start/stop control: P6.00-P6.15		79
P6.00	Start mode	0	79
P6.01	Revolving speed tracking mode	0	79
P6.02	Revolving speed tracking speed	20	80
P6.03	Start frequency	0.00Hz	80
P6.04	Start frequency holding time	0.0s	80
P6.05	Start dc braking current /pre-excitation current	0%	80
P6.06	Start dc braking time /pre-excitation time	0.0s	80
P6.07	Acceleration/deceleration mode	0	80
P6.08	S-curve initial-segment time proportion	30.0%	81
P6.09	S-curve end-segment time proportion	30.0%	81

P6.10	Stop mode	0	82
P6.11	DC braking initial frequency at stop	0.00Hz	82
P6.12	DC braking waiting time at stop	0.0s	82
P6.13	DC braking current at stop	0%	82
P6.14	DC braking time at stop	0.0s	82
P6.15	Brake utilization ratio	100%	83
P7	Keyboard and display: P7.00-P7.14		83
P7.01	MF/REV key function selection	0	83
P7.02	STOP/RESET function	1	84
P7.03	LED running display parameter 1	1F	84
P7.04	LED running display parameter 2	0	84
P7.05	LED stop display parameter	33	84
P7.06	Load speed coefficient	1.0000	85
P7.07	Inverter module radiator temperature	12 ℃	85
P7.08	Rectifier module radiator temperature	0°C	85
P7.09	Accumulative running time	Oh	85
P7.10	Product ID	-	85
P7.11	Software version No.	-	85
P7.12	Load speed display decimal digits	1	85
P7.13	Accumulative power-on time	-	85
P7.14	Accumulative power consumption	-	85
P8	Auxiliary Function: P8.00-P8.53		86
P8.00	Jog running frequency	2.00Hz	86
P8.01	Jog acceleration time	20.0s	86
P8.02	Jog deceleration time	20.0s	86
P8.03	Acceleration time 2	10.0s	86
P8.04	Deceleration time 2	10.0s	86
P8.05	Acceleration time 3	10.0s	86
P8.06	Deceleration time 3	10.0s	86
P8.07	Acceleration time 4	10.0s	86
P8.08	Deceleration time 4	10.0s	86
P8.09	Hopping frequency 1	0.00Hz	86
P8.10	Hopping frequency 2	0.00Hz	86

P8.11	Hopping frequency amplitude	0.00Hz	86
P8.12	Dead zone time of forward & reverse rotations	0.0s	87
P8.13	Reverse rotation control	0	87
P8.14	Set frequency below lower limit running mode	0	87
P8.15	Droop control	0.00Hz	87
P8.16	Accumulative power-on time arrival setup	0h	87
P8.17	Accumulative running time arrival setup	0h	88
P8.18	Start protection selection	0	88
P8.19	Frequency detection value (FDT1)	50.00Hz	88
P8.20	Frequency detection hysteresis value (FDT1)	5.0%	88
P8.21	Frequency arrival detection amplitude	0.0%	89
P8.22	Acc./dec. hopping frequency validity	0	89
P8.25	Acc. time1 & acc. time 2 frequency switching point	0.00Hz	89
P8.26	Dec. time1 & dec. time 2 frequency switching point	0.00Hz	90
P8.27	Terminal jog priority	0	90
P8.28	Frequency detection value(FDT2)	50.00Hz	90
P8.29	Frequency detection hysteresis value(FDT2)	5.0%	90
P8.30	Random frequency arrival detection value1	50.00Hz	90
P8.31	Random frequency arrival detection range1	0.0%	90
P8.32	Random frequency arrival detection value2	50.00Hz	90
P8.33	Random frequency arrival detection range2	0.0%	90
P8.34	Zero-current detection level	5.0%	91
P8.35	Zero-current detection delay time	0.10s	91
P8.36	Output current overlimit value	200.0%	92
P8.37	Output current overlimit detection delay time	0.00s	92
P8.38	Random current arrival 1	100.0%	92
P8.39	Random current arrival range1	0.0%	92
P8.40	Random current arrival 2	100.0%	92
P8.41	Random current arrival range2	0.0%	92
P8.42	Timing function selection	0	93
P8.43	Running time timing selection	0	93
P8.44	Timing running time	0.0Min	93
P8.45	Al1 input voltage protection value lower limit	3.10V	93

P8.46	Al1 input voltage protection value upper limit	6.80V	93
P8.47	Module temperature arrival	75 ℃	93
P8.48	Cooling fan control	0	93
P8.49	Wake-up frequency	0.00Hz	94
P8.50	Wake-up delay time	0.0s	94
P8.51	Sleep frequency	0.00Hz	94
P8.52	Sleep delay time	0.0s	94
P8.53	The running time arrival	0.0Min	94
P9	Overload and Protection: P9.00-P9.70		94
P9.00	Motor overload protection selection	1	94
P9.01	Motor overload protection gain	1.00	94
P9.02	Motor overload pre-alarm coefficient	80%	94
P9.03	Over-voltage stall gain	0	94
P9.04	Over-voltage stall protection voltage	130%	95
P9.05	Over current stall gain	20	95
P9.06	Over current stall protection current	150%	95
P9.07	Ground short circuit protection upon power-on	1	95
P9.09	Fault auto reset times	0	95
P9.10	Fault auto reset FAULT DO selection	0	95
P9.11	Fault auto reset interval	1.0s	95
P9.12	Input phase lack protection selection	11	95
P9.13	Output phase lack protection selection	1	96
P9.14	The first fault type	-	96
P9.15	The second fault type	-	96
P9.16	The latest fault type	-	96
P9.17	Third fault frequency	-	97
P9.18	Third fault current	-	97
P9.19	Third fault bus voltage	-	97
P9.20	Third fault input terminal	-	97
P9.21	Third fault output terminal	-	97
P9.22	Third fault inverter state	-	97
P9.23	Third fault power-on time	-	97
P9.24	Third fault running time	-	97
P9.27	Second fault frequency	-	97

P9.28	Second fault current	-	97
P9.29	Second fault bus voltage	-	97
P9.30	Second fault input terminal	-	97
P9.31	Second fault output terminal	-	98
P9.32	Second fault inverter state	-	98
P9.33	Second fault power-on time	-	98
P9.34	Second fault running time	-	98
P9.37	First fault frequency	-	98
P9.38	First fault current	-	98
P9.39	First fault bus voltage	-	98
P9.40	First fault input terminal	-	98
P9.41	First fault output terminal	-	98
P9.42	First fault inverter state	-	98
P9.43	First fault power-on time	-	98
P9.44	First fault running time	-	98
P9.47	Fault protection action selection 1	00000	98
P9.48	Fault protection action selection 2	00000	99
P9.49	Fault protection action selection 3	00000	99
P9.50	Fault protection action selection 4	00000	100
P9.54	Continued to run when fault frequency selection	0	100
P9.55	Abnormal backup frequency	100.0%	100
P9.56	Motor temperature sensor	0	100
P9.57	Motor overheating protection threshold	110℃	100
P9.58	Motor overheating pre-alarm threshold	90 °C	100
P9.59	Transient stop selection	0	101
P9.60	Transient stop action pause protection voltage	90.0%	101
P9.61	Transient stop voltage recovery judgment time	0.50s	101
P9.62	Transient stop action judgment voltage	80.0%	101
P9.63	Load-off protection selection	0	102
P9.64	Load-off detection level	10.0%	102
P9.65	Load-off detection time	1.0s	102
P9.67	Over speed detection value	20.0%	102
P9.68	Over speed detection time	1.0s	102

P9.69	Excessive speed deviation detection value	20.0%	102
P9.70	Excessive speed deviation detection time	5.0s	102
PA	PID Function group: PA.00-PA.28	0	102
PA.00	PID reference source	50.0%	103
PA.01 PA.02	PID reference value PID feedback source	0	103
PA.02	PID action direction	0	103
PA.04	PID reference feedback range	1000	103
PA.05	Proportional gain Kp1	20.0	104
PA.06	Integration time Ti1	2.00s	104
PA.07	Differential time Td1	0.000s	104
PA.08	PID cutoff frequency of reverse rotation	2.00Hz	104
PA.09	PID deviation limit	0.0%	104
PA.10	PID differential amplitude limit	0.10%	104
PA.11	PID reference change duration	0.00s	104
PA.12	PID feedback filter time	0.00s	105
PA.13	PID output filter time	0.00s	105
PA.14	Reserved	-	105
PA.15	Proportional gain Kp2	20.0	105
PA.16	Integration time Ti2	2.00s	105
PA.17	Differential time Td2	0.000s	105
PA.18	PID parameter switching condition	0	105
PA.19	PID parameter switching deviation1	20.0%	105
PA.20	PID parameter switching deviation2	80.0%	105
PA.21	PID initial value	0.0%	106
PA.22	PID initial value retention time	0.00s	106
PA.23	Output deviation forward maximum value	1.00%	106
PA.24	Output deviation reverse maximum value	1.00%	106
PA.25	PID integration attribute	00	106
PA.26	PID feedback loss detection value	0.0%	107
PA.27	PID feedback loss detection time	0s	107
PA.28	PID stop operation	0	107
Pb	Swing Frequency, Fixed Length and Counting	g: Pb.00-Pb.09	107
Pb.00	Swing setup mode	0	107

Pb.01	Swing frequency amplitude	0.0%	108
Pb.02	Jump frequency amplitude	0.0%	108
Pb.03	Swing frequency cycle	10.0s	108
Pb.04	Triangle wave rise time coefficient	50.0%	108
Pb.05	Setup length	1000m	108
Pb.06	Actual length	0m	108
Pb.07	Pulse number per meter	100.0	108
Pb.08	Counting value setup	1000	108
Pb.09	Designated counting value	1000	108
PC	MS Speed Function & Simple PLC Function: PC.	00-PC.51	109
PC.00	MS command 0	0.0%	109
PC.01	MS command 1	0.0%	109
PC.02	MS command 2	0.0%	109
PC.03	MS command 3	0.0%	109
PC.04	MS command 4	0.0%	109
PC.05	MS command 5	0.0%	109
PC.06	MS command 6	0.0%	109
PC.07	MS command 7	0.0%	109
PC.08	MS command 8	0.0%	109
PC.09	MS command 9	0.0%	109
PC.10	MS command 10	0.0%	109
PC.11	MS command 11	0.0%	109
PC.12	MS command 12	0.0%	109
PC.13	MS command 13	0.0%	109
PC.14	MS command 14	0.0%	109
PC.15	MS command 15	0.0%	109
PC.16	PLC running mode	0	110
PC.17	PLC power off memory selection	00	111
PC.18	PLC 0segment running time	0.0s(h)	111
PC.19	PLC 0segment acc./dec. time	0	111
PC.20	PLC 1segment running time	0.0s(h)	111
PC.21	PLC 1segment acc./dec. time	0	111

PC.22	PLC 2 segment running time	0.0s(h)	111
PC.23	PLC 2 segment acc./dec. time	0	111
PC.24	PLC 3 segment running time	0.0s(h)	111
PC.25	PLC 3 segment acc./dec. time	0	111
PC.26	PLC 4 segment running time	0.0s(h)	111
PC.27	PLC 4 segment acc./dec. time	0	111
PC.28	PLC 5 segment running time	0.0s(h)	111
PC.29	PLC 5 segment acc./dec. time	0	111
PC.30	PLC 6 segment running time	0.0s(h)	111
PC.31	PLC 6 segment acc./dec. time	0	111
PC.32	PLC 7 segment running time	0.0s(h)	111
PC.33	PLC 7 segment acc./dec. time	0	111
PC.34	PLC 8 segment running time	0.0s(h)	111
PC.35	PLC 8 segment acc./dec. time	0	111
PC.36	PLC 9 segment running time	0.0s(h)	111
PC.37	PLC 9 segment acc./dec. time	0	111
PC.38	PLC 10 segment running time	0.0s(h)	111
PC.39	PLC 10 segment acc./dec. time	0	111
PC.40	PLC 11 segment running time	0.0s(h)	111
PC.41	PLC 11 segment acc./dec. time	0	111
PC.42	PLC 12 segment running time	0.0s(h)	112
PC.43	PLC 12 segment acc./dec. time	0	112
PC.44	PLC 13 segment running time	0.0s(h)	112
PC.45	PLC 13 segment acc./dec. time	0	112
PC.46	PLC 14 segment running time	0.0s(h)	112
PC.47	PLC 14 segment acc./dec. time	0	112
PC.48	PLC 15 segment running time	0.0s(h)	112
PC.49	PLC 15 segment acc./dec. time	0	112
PC.50	Running time unit	0	112
PC.51	MS command 0 reference mode	0	112
Pd	Communication function group Pd.00-Pd.29		 112
Pd.00	Baud rate	6005	112
Pd.01	Data format	0	113

Pd.02	Local address	1	113
Pd.03	Response delay	2	113
Pd.04	Excessive communication time	0.0	113
Pd.05	Data transformat selection	30	113
Pd.06	Communication read current resolution	0	114
PE	User customization function code: PE.00-PE	.29	114
PE.00	User function code 0	P0.01	114
PE.01	User function code 1	P0.02	114
PE.02	User function code 2	P0.03	114
PE.03	User function code 3	P0.07	114
PE.04	User function code 4	P0.08	114
PE.05	User function code 5	P0.17	114
PE.06	User function code 6	P0.18	114
PE.07	User function code 7	P3.00	114
PE.08	User function code 8	P3.01	114
PE.09	User function code 9	P4.00	114
PE.10	User function code 10	P4.01	114
PE.11	User function code 11	P4.02	114
PE.12	User function code 12	P5.04	114
PE.13	User function code 13	P5.07	114
PE.14	User function code 14	P6.00	114
PE.15	User function code 15	P6.10	114
PE.16	User function code 16	P0.00	114
PE.17	User function code 17	P0.00	114
PE.18	User function code 18	P0.00	114
PE.19	User function code 19	P0.00	114
PE.20	User function code 20	P0.00	114
PE.21	User function code 21	P0.00	114
PE.22	User function code 22	P0.00	114
PE.23	User function code 23	P0.00	114
PE.24	User function code 24	P0.00	114
PE.25	User function code 25	P0.00	114

PE.26	User function code 26	P0.00	115
PE.27	User function code 27	P0.00	115
PE.28	User function code 28	P0.00	115
PE.29	User function code 29	P0.00	115
PP	Function code management: PP.00-PP.04		115
PP.00	User password	0	115
PP.01	Parameter initialization	0	115
PP.02	Parameter display attribute	11	116
PP.03	Personalized parameter display selection	00	116
PP.04	Function codes modification attribute	0	117
A0	Torque control group: A0.00-A0.08		117
A0.00	Speed/ torque control mode selection	0	117
A0.01	Torque setup source selection in torque control mode	0	117
A0.03	Torque digital setup in torque control mode	150%	117
A0.05	Torque control forward maximum frequency	50.00Hz	117
A0.06	Torque control reverse maximum frequency	50.00Hz	117
A0.07	Torque control acc. time	0.00s	117
A0.08	Torque control dec. time	0.00s	118
A1	Virtual IO: A1.00-A1.21	-,	118
A1.00	Virtual VDI1 function selection	0	118
A1.01	Virtual VDI2 function selection	0	118
A1.02	Virtual VDI3 function selection	0	118
A1.03	Virtual VDI4 function selection	0	118
A1.04	Virtual VDI5 function selection	0	118
A1.05	Virtual VD1 terminal valid state set mode	00000	118
A1.06	Virtual VD1 terminal state	00000	119
A1.07	Al1 as DI function selection	0	120
A1.08	Al2 as DI function selection	0	120
A1.09	AI3 as DI function selection	0	120
A1.10	Al as DI valid mode selection	000	120
A1.11	Virtual VDO1 output function	0	121
A1.12	Virtual VDO2 output function	0	121
A1.13	Virtual VDO3 output function	0	121
A1.14	Virtual VDO4 output function	0	121

A1.15	Virtual VDO5 output function	0	121
A1.16	VDO1 output delay time	0.0s	121
A1.17	VDO2 output delay time	0.0s	121
A1.18	VDO3 output delay time	0.0s	121
A1.19	VDO4 output delay time	0.0s	121
A1.20	VDO5 output delay time	0.0s	121
A1.21	VDO output terminal valid state selection	00000	121
A2	The second motor control: A2.00-A2.65		122
A2.00	Motor type selection	0	122
A2.01	Rated power	-	122
A2.02	Rated voltage	-	122
A2.03	Rated current	-	122
A2.04	Rated frequency	-	123
A2.05	Rated revolving speed	-	123
A2.06	Asynchronous motor stator resistance	-	123
A2.07	Asynchronous motor rotor resistance	-	123
A2.08	Asynchronous motor leakage inductance	-	123
A2.09	Asynchronous motor mutual inductance	-	123
A2.10	Asynchronous motor no load current	-	123
A2.16	Synchronous motor stator resistance	-	123
A2.17	Synchronous motor D-axis inductance	-	123
A2.18	Synchronous motor Q-axis inductance	-	123
A2.19	Synchronous motor inductance resistance unit	0	123
A2.20	Synchronous motor back electromotive force coefficient	0.1V	123
A2.21	Synchronous motor output phase lack detection time	0	123
A2.27	Encoder pulses number	2500	123
A2.28	Encoder type	0	123
A2.29	Speed feedback PG selection	0	123
A2.30	ABZ incremental encoder AB phase	0	123
A2.31	Encoder installation angle	0	123
A2.32	UVW phase sequence	0	123
A2.33	UVW encoder offset angle	0.00	123

A2.34	Rotary transformer pole pairs	1	123
A2.35	UVW pole-pairs	4	124
A2.36	PG dropped inspection time	0.0s	124
A2.37	Tuning selection	0	124
A2.38	Speed loop proportional gain 1	30	124
A2.39	Speed loop integration time1	0.50s	124
A2.40	Switching frequency1	5.00Hz	124
A2.41	Speed loop proportional gain 2	20	124
A2.42	Speed loop integration time 2	1.00s	124
A2.43	Switching frequency 2	10.00Hz	124
A2.44	Vector control slip gain	150%	124
A2.45	Speed-loop filtering time	0.000s	124
A2.46	Vector control over-excitation gain	64	124
A2.47	Torque upper limit source in speed control mode	0	124
A2.48	Torque upper limit digital setup in speed control mode	150.0%	124
A2.51	Excitation regulation proportional gain	2000	124
A2.52	Excitation regulation integration gain	1300	124
A2.53	Torque regulation proportional gain	2000	124
A2.54	Torque regulation integration gain	1300	124
A2.55	Speed loop integration attribute	0	125
A2.56	Synchronous motor field weakening mode	1	125
A2.57	Synchronous motor field weakening depth	100%	125
A2.58	Maximum field weakening current	50%	125
A2.59	Field weakening auto regulation gain	100%	125
A2.60	Field weakening integration multiples	2	125
A2.61	Motor 2 control mode	0	125
A2.62	Motor 2 acc./dec. time selection	0	125
A2.63	Motor 2 torque hoist	-	125
A2.65	Motor 2 oscillation suppression gain	-	125
A3	The third motor control: A3.00-A3.65		 125
A3.00	Motor type selection	0	125
A3.01	Rated power	-	125
A3.02	Rated voltage	-	125

A3.03	Rated current	-	125
A3.04	Rated frequency	-	126
A3.05	Rated revolving speed	-	126
A3.06	Asynchronous motor stator resistance	-	126
A3.07	Asynchronous motor rotor resistance	-	126
A3.08	Asynchronous motor leakage inductance	-	126
A3.09	Asynchronous motor mutual inductance	-	126
A3.10	Asynchronous motor no load current	-	126
A3.16	Synchronous motor stator resistance	-	126
A3.17	Synchronous motor D-axis inductance	-	126
A3.18	Synchronous motor Q-axis inductance	-	126
A3.19	Synchronous motor inductance resistance unit	0	126
A3.20	Synchronous motor back electromotive force coefficient	0.1V	126
A3.21	Synchronous motor output phase lack detection time	0	126
A3.27	Encoder pulses number	2500	126
A3.28	Encoder type	0	126
A3.29	Speed feedback PG selection	0	126
A2.30	ABZ incremental encoder AB phase	0	126
A3.31	Encoder installation angle	0	126
A3.32	UVW phase sequence	0	126
A3.33	UVW encoder offset angle	0.00	127
A3.34	Rotary transformer pole pairs	1	127
A3.35	UVW pole-pairs	4	127
A3.36	PG dropped inspection time	0.0s	127
A3.37	Tuning selection	0	127
A3.38	Speed loop proportional gain 1	30	127
A3.39	Speed loop integration time1	0.50s	127
A3.40	Switching frequency1	5.00Hz	127
A3.41	Speed loop proportional gain 2	20	127
A3.42	Speed loop integration time 2	1.00s	127
A3.43	Switching frequency 2	10.00Hz	127
A3.44	Vector control slip gain	150%	127

A3.45	Speed-loop filtering time	0.000s	127
A3.46	Vector control over-excitation gain	64	127
A3.47	Torque upper limit source in speed control mode	0	127
A3.48	Torque upper limit digital setup in speed control mode	150.0%	127
A3.51	Excitation regulation proportional gain	2000	127
A3.52	Excitation regulation integration gain	1300	127
A3.53	Torque regulation proportional gain	2000	127
A3.54	Torque regulation integration gain	1300	128
A2.55	Speed loop integration attribute	0	128
A3.56	Synchronous motor field weakening mode	1	128
A3.57	Synchronous motor field weakening depth	100%	128
A3.58	Maximum field weakening current	50%	128
A3.59	Field weakening auto regulation gain	100%	128
A3.60	Field weakening integration multiples	2	128
A3.61	Motor 3 control mode	0	128
A3.62	Motor 3 acc./dec. time selection	0	128
A3.63	Motor 3 torque hoist	-	128
A3.65	Motor 3 oscillation suppression gain	-	128
A4	The fourth motor control:A4.00-A4.65		128
A4.00	Motor type selection	0	128
A4.01	Rated power	-	128
A4.02	Rated voltage	-	128
A4.03	Rated current	-	129
A4.04	Rated frequency	-	129
A4.05	Rated revolving speed	-	129
A4.06	Asynchronous motor stator resistance	-	129
A4.07	Asynchronous motor rotor resistance	-	129
A4.08	Asynchronous motor leakage inductance	-	129
A4.09	Asynchronous motor mutual inductance	-	129
A4.10	Asynchronous motor no load current	-	129
A4.16	Synchronous motor stator resistance	-	129
A4.17	Synchronous motor D-axis inductance	-	129
A4.18	Synchronous motor Q-axis inductance	-	129

A4.19	Synchronous motor inductance resistance unit	0	1	129
A4.20	Synchronous motor back electromotive force	0.1V		129
A4.21	coefficient Synchronous motor output phase lack detection	0	1	129
A4.27	time Encoder pulses number	2500	1	129
A4.28	Encoder type	0		129
A4.29	Speed feedback PG selection	0		129
A4.30	ABZ incremental encoder AB phase	0		129
A4.31	Encoder installation angle	0		129
A4.32	UVW phase sequence	0		129
A4.33	UVW encoder offset angle	0.00	1	130
A4.34	Rotary transformer pole pairs	1		130
A4.35	UVW pole-pairs	4		130
A4.36	PG dropped inspection time	0.0s		130
A4.37	Tuning selection	0		130
A4.38	Speed loop proportional gain 1	30		130
A4.39	Speed loop integration time1	0.50s		130
A4.40	Switching frequency1	5.00Hz		130
A4.41	Speed loop proportional gain 2	20	1	130
A4.42	Speed loop integration time 2	1.00s	1	130
A4.43	Switching frequency 2	10.00Hz	1	130
A4.44	Vector control slip gain	150%	1	130
A4.45	Speed-loop filtering time	0.000s	1	130
A4.46	Vector control over-excitation gain	64	1	130
A4.47	Torque upper limit source in speed control mode	0	1	130
A4.48	Torque upper limit digital setup in speed control mode	150.0%	1	130
A4.51	Excitation regulation proportional gain	2000	1	130
A4.52	Excitation regulation integration gain	1300	1	130
A4.53	Torque regulation proportional gain	2000	1	130
A4.54	Torque regulation integration gain	1300	1	131
A4.55	Speed loop integration attribute	0	1	131
A4.56	Synchronous motor field weakening mode	1	1	131
A4.57	Synchronous motor field weakening depth	100%	1	131

A4.58	Maximum field weakening current	50%	131
A4.59	Field weakening auto regulation gain	100%	131
A4.60	Field weakening integration multiples	2	131
A4.61	Motor 4 control mode	0	131
A4.62	Motor 4 acc./dec. time selection	0	131
A4.63	Motor 4 torque hoist	-	131
A4.65	Motor 4 oscillation suppression gain	-	131
A5	Control optimization group: A5.00-A5.09		131
A5.00	DPWM switching frequency upper limit	12.00Hz	131
A5.01	PWM modulation mode	0	132
A5.02	Dead-zone compensation mode selection	1	132
A5.03	Random PWM depth	0	132
A5.04	Rapid current-limiting enable	1	132
A5.05	Current detection compensation	5	132
A5.06	Under-voltage point setup	100.0%	132
A5.07	SVC optimization mode selection	1	133
A5.08	Dead zone time adjustment	150%	133
A5.09	Over-voltage point setup	810.0V	133
A6	Al curve setup: A6.00-A6.29	II	133
A6.00	Al curve 4 minimum input	0.00V	133
A6.01	Al curve 4 minimum input corresponding setup	0.0%	133
A6.02	Al curve 4 inflection point 1 input	3.00V	133
A6.03	Al curve 4 inflection point 1 input corresponding setup	30.0%	133
A6.04	Al curve 4 inflection point 2 input	6.00V	133
A6.05	Al curve 4 inflection point 2 input corresponding setup	60.0%	133
A6.06	Al curve 4 maximum input	10.00V	133
A6.07	Al curve 4 maximum input corresponding setup	100.0%	133
A6.08	Al curve 4 minimum input	-10.00V	133
A6.09	Al curve 5 minimum input corresponding setup	-100.0%	133
A6.10	Al curve 5 inflection point 1 input	-3.00V	133
710.10			
A6.11	Al curve 5 inflection point 1 input corresponding setup	-30.0%	133
		-30.0% 3.00V	133 133

A6.14	Al curve 5 maximum input	10.00V		133
A6.15	Al curve 5 maximum input corresponding setup	100.0%		133
A6.24	Al1 set hopping point	0.0%		134
A6.25	Al1 set hopping amplitude	0.5%		134
A6.26	Al2 set hopping point	0.0%		134
A6.27	Al2 set hopping amplitude	0.5%		134
A6.28	AI3 set hopping point	0.0%		134
A6.29	Al3 set hopping amplitude	0.5%		134
A 7	User programmable card parameters: A7.00-A7	.09		134
A7.00	User programmable function selection	0		134
A7.01	Control board output terminal control mode selection	-		134
A7.02	Programmable card expansion Al3x function configuration	-		135
A7.03	FMP output	0.0%		135
A7.04	AO1 output	0.0%		135
A7.05	Switch output	000		135
A7.06	Programmable card frequency setup	0.0%		135
A7.07	Programmable card torque setup	0.0%		135
A7.08	Programmable card command setup	0		135
A7.09	Programmable card fault setup	0		135
A9	Extended function group:A9.00-A9.09			135
A9.00	Load type	0		135
A9.01	User parameter 0	0		136
A9.02	User parameter 1	0		136
A9.03	User parameter 2	0		136
A9.04	User parameter 3	0		136
A9.05	User parameter 4	0		136
A9.06	User parameter 5	0		136
A9.07	User parameter 6	0		136
A9.08	User parameter 7	0		136
A9.09	User parameter 8	0		136
AC	AIAO correction: AC.00-AC.19		· · · · · · · · · · · · · · · · · · ·	136
AC.00	Al1 measured voltage 1	Factory calibration		136
	Al1 display voltage 1	Factory		136

		calibration	
40.00		Factory	100
AC.02	Al1 measured voltage 2	calibration	136
		Factory	136
AC.03	Al1 display voltage 2	calibration	130
AC.04	AIO management voltage 1	Factory	136
AC.04	Al2 measured voltage 1	calibration	150
AC.05	Al2 display voltage 1	Factory	136
AC.05		calibration	
AC.06	Al2 measured voltage 2	Factory	136
710.00		calibration	
AC.07	Al2 display voltage 2	Factory	136
/10.07		calibration	
AC.08	Al3 measured voltage 1	Factory	136
		calibration	
AC.09	Al3 display voltage 1	Factory	136
7.0.00		calibration	
AC.10	Al3 measured voltage 2	Factory	136
		calibration	
AC.11	Al3 display voltage 2	Factory	136
		calibration	
AC.12	A01 target voltage 1	Factory	137
		calibration	
AC.13	A01 measured voltage 1	Factory	137
		calibration	
AC.14	A01 target voltage 2	Factory	137
		calibration	
AC.15	A01 measured voltage 2	Factory	137
		calibration	
AC.16	A02 target voltage 1	Factory	137
		calibration	
AC.17	A02 measured voltage 1	Factory	137
		calibration Factory	
AC.18	A02 target voltage 2	calibration	137
		Factory	
AC.19	A02 measured voltage 2	calibration	137
		calibration	

VTdrive Technology Limited

Address: 6F, Xinfeng Building B, Yangguang Industrial Zone, Xili Town, Nanshan District, Shenzhen, China.

Postal Code: 518055

Tel: 0755 - 23060667

Fax: 0755 - 33671802

Website: www.vtdrive.com

E-mail: info@vtdrive.com

English version: FIE1 (BOM: 37330099) printed for the first time.

This document is subject to change without notice.

All rights reserved. Any unauthorized reproduction or copy is forbidden.